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1. Introduction

Perspective is one of the most highly esteemed achievements of the Renaissance. The artists of that
iconic period, focusing on how to draw realistically 3-D scenes on 2-D canvases, made important discoveries
on how humans perceive three dimensional space, [1]. That knowledge became, two centuries later, the
cornerstone for the foundation of projective geometry, a purely mathematical endeavor. It is attributed to
Girard Desargues, contemporary of Rene Descartes; so that it’s dawn coincides with that of analytic
geometry. However, in educational terms, we mathematicians have left that cultural heritage in the realm of
the artistic curriculum and barely exploit it in ours; Desargues, compared to Descartes, is barely known.
Most mathematics students don’t even know how to draw a tiled floor in perspective.

Figure 1. a) Tiled floor in perspective. b) Conic section.

The standard curriculum defines conics as plane sections of a circular cone, and illustrates them using
(mostly right) circular ones. This approach leaves in students the wrong impression that conics are metric
in nature (since the circle appears as necessary in their definition). Also, since conics are handled mainly
by their metric and algebraic properties students end up with the impression that the correct and only way
to understand conics is through their algebraic equations. While the algebraic equation treatment of conic
sections is useful and important, it depends on the metric properties of euclidean space and belongs entirely
to analytic geometry and not to projective geometry.

But the essence of conics is projective, they may be defined and studied using only projective concepts.
This is what we do in this paper. We present conics and their properties from a purely projective point of
view. Actually this can be done in several different but equivalent ways. It can be shown that their metric
properties happen when they live in euclidian space. This development of conics is achieved in this paper
by using three fundamental ideas:

(1) Geometric space has at least three dimensions.
(2) Harmony is the central notion in projective geometry, specially in defining conics projectively.
(3) The axiom of double ruling is preferred over other equivalent and more traditional principles.

Let us explain briefly why these ideas are both natural and powerful.
Since we represent our world in drawings and paintings by projecting three dimensional objects onto plane

surfaces, it is not surprising that several theorems in planar projective geometry can be easily proved by what
we may call 3D-lifting. A well known example is the theorem of Desargues stating that the corresponding
sides of two coplanar triangles in perspective meet in collinear points, as shown in a) of the following figure.
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Figure 2. Proofs by 3D-lifting of a) Desargues theorem and b) Harmonic theorem.

It is also known that the notions of harmonic quadruple and harmonic pencil are projective in nature and
need no metric or algebraic concept in order to be defined, even though they are almost always introduced
through the cross ratio, which involves relations between measured segments. It may be not so well known
but it is a fact that these notions may be formalized and shown to be well defined (Harmonic theorem) by
using purely projective arguments. Again, such proofs are most easily achieved using a 3D-lifting procedure,
as illustrated in b) of the above figure.

What may be still unknown and we will prove in this paper is that that conics may be defined as the
locus of points that see four fixed points in general position (i.e. no three collinear) through a harmonic
pencil. Thus harmony may be considered the basic notion behind conics, for which reason we prefer to call
them harmonic curves instead of conics.

We will also show that harmonic curves or conics may be defined as intersections of certain ruled surfaces
constructed in a purely projective (non-metric) way through pure incidence. These surfaces are the ones
determined by three lines in general position (no two of them coplanar) which we call the generating lines
of the surface and consist of the lines that touch all three generating lines.

Figure 3. Intersection of a ruled surface with a plane: a) Ellipse b) Hyperbola.

What we call the axiom of double ruling is the statement that if any three lines of such a surface are used
as the generating lines of a new ruled surface, the new surface coincides with the original one. If this axiom
is assumed and a conic section is known to be the interection of a ruled surface with a plane, it is easy to
obtain a proof of Pascal’s hexagon theorem by a kind of 3D-lifting procedure. Although this fact was proved
by Germinal Pierre de Dandelin in the early XIX century, even today it is not well known. What
results very interesting is to realize, as we prove in this paper, that the axiom of double ruling is equivalent
to Pappus’ theorem and thus it is legitimate to use it in developing projective geometry.
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Still another way of defining “conic sections” is through the concept of polarity, as was done in the XIX
century by Karl Georg Christin Von Staudt. In the paper we extend the concept of polarity to
three dimensions, apply it to our doubly ruled surfaces and prove that Von Staudt’s results follow from this
approach.

2. Harmony

Defined as a special case of the cross ratio as we still teach it today, harmonicity seems to have been first
used by Apolonius related to conics (see e.g. [2]). However, it was observed to be a non metric concept
deeply related to perspective until the XIX century by Karl Georg Christian von Staudt, [7]. It can be
defined as follows.

Four concurrent lines form a harmonic pencil if there is a parallelogram with two of them as sides, a third
as diagonal and the fourth parallel to the other diagonal; the concurrency point is called its center ; O in
Figure 1.a. It is a projective notion because the role played by the line at infinity, may be assumed by any
line h not incident with O, called the horizon, to define the equivalence relation of parallelism as concurrency
with h, as in Figure 1.b. A harmonic range is the intersection of a harmonic pencil with a line not incident
with its center (e.g., the four points in h in Figure 1.b, divided into two pairs coming from “sides” versus
“diagonals”).

Figure 4. a) A harmonic pencil with a parallelogram construction. b) Parallelism may be defined
by any horizon not through the concurrency point.

Dual geometric constructions that yield the harmonic conjugate of a point (or line) with respect to a
colinear (concurrent) pair of points (lines), follow from the definitions. These constructions are also referred
to as the fourth harmonic, because they produce a harmonic range (pencil) out of three of its elements, with
one distinguished.

Harmonicity is preserved by projections. It is independent of the point of view, in the sense that all
points outside the support (line) of a harmonic range “see” it as harmonic. However, if four points in general
position (i.e., no three coloinear) are considered, some points “see” them as harmonic but most don’t.

The harmonic curve generated (or defined) by four points in general position and partitioned into two
pairs, is the locus of points that see them as harmonic, that is, which are the center of a harmonic pencil
that contains them. There are generic points different from the generators, whose lines to them form a
harmonic pencil (Figure 2.a); and the generators which “see themselves” in the fourth harmonic of its lines
to the other three (the one in their pair, distinguished); these lines are called the generating tangents and
are paired by incidence with the generating points (Figure 2.b).
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Figure 5. a) The harmonic curve generated by four points, two red and two blue; b) they belong
to the harmonic curve because of their tangent lines.

A dual notion arises naturally. The harmonic bundle generated (or defined) by four lines in general position
(no three collinear) and partitioned into two pairs, is the set of lines that see (or feel) them as harmonic, that
is, that contain a harmonic range transversal (i.e., paired by incidence) with the lines. Again, the generic
lines intersect the generators in a harmonic range, and the generating lines “choose” the fourth harmonic of
their intersection with the other three, to “represent” them; it is their contact point.

Of course, it is true that each line in the harmonic bundle that arises from the generating tangents of a
harmonic curve, passes through a unique point in it (its contact point and the line is the tangent there). But
the proof of this (Theorem 2) needs more work, so we shall address our main issue first.

Theorem 1. Conics are harmonic curves.

Proof. First observe that the vertices of a square paired diagonally, generate its circumscribed circle as
harmonic curve; it is a high-school exercise (see Figure 3.a). Then, because harmonicity is preserved by pro-
jections, the plane section of any cone with a circle as base, is the harmonic curve of the projected generators
of the circle (see Figure 3.b). And conics are, by their classic definition, such sections for perpendicular, or
straight, cones. �

Figure 6. a) A circle is the harmonic curve generated by the extremes of two perpendicular
diameters. b) The projection of a harmonic curve is also a harmonic curve; hence, conics are
harmonic curves.

A gap in this proof is that it assumes that no other point outside the circle belongs to the harmonic curve.
This will be taken care of with the following construction of a harmonic curve.

Given four points in general position and partitioned into the pairs A,B and C,D, let C denote the
harmonic curve they generate, and let ` be the line through A and B (see Figure 4.a). Given a point X ∈ `,
let Y be its fourth harmonic with respect to A,B. Let Z be the intersection of the lines XC and Y D. A
more convenient notation, because it makes duality easier to see, and that we will adopt is

(1) Z = (C ∨X) ∧ (D ∨ Y ) ;

where ∨, “join”, denotes the linear generating (or closure) operator and ∧, “meet”, is intersection. Then,
Z sees the generators as harmonic (Z ∈ C), because its lines to them intersect ` in the harmonic range
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A,X,B, Y (observe that it is written so that the pairs are not consecutive, which is the cyclic order with
which they appear on `).

So that as X moves along `, Z traces all of C; because in the line X ∨ C there is no point in C, other
than Z or C. This implies that C is bijectively parametrized by the projective line `; or equivalently, by the
concurrent pencil of lines centered at C. Therefore, the circumscribed circle is indeed the harmonic curve of
the vertices of a square, paired diagonally.

Figure 7. a) The construction of a harmonic curve. b) The dual construction for its harmonic
bundle. The point Z and the tangent line through it, z, are the image of D and its tangent line, d,
under the harmonic reflection with mirror y = X ∨ L and center Y .

With a dynamic geometry system having the fourth harmonic built in as a tool (such as ProGeo3D, [6],
used to produce the figures), this construction is quite simple. It also derives into insightful examples of
parabolas and hyperbolas by sending some of the starting elements of the construction to infinity.

We have proved that circles drawn in perspective are the classic conic curves. Now, the three types fall
into where the observer may be. If she is outside the circle, she sees an ellipse; from the inside, he sees a
hyperbola, and the parabola (having the line at infinity as a tangent) is the unstable passage from one case
to the other.

To see that harmonic curves are paired naturally with harmonic bundles, we need yet another important
basic concept associated with harmony. Given a line m and a point C 6∈ m, the harmonic reflection with
mirror m and center C, denoted ρC,m, is the map from the projective plane to itself that sends a point to
its fourth harmonic with respect to C and the intersection with the mirror m of its line to C.

In other words, consider the fourth harmonic with respect to a pair of points (or with that “mirror pair”),
as a map of a projective line to itself, then glue these maps on the pencil of lines about the center C with the
other mirror point at the mirror m which thus remains pointwise fixed; it looks as a reflection close to the
mirror and as a central inversion about the center. Of course, harmonic reflections are colinearities (send
lines to lines), their duals are also harmonic reflections (with roles interchanged) and are involutions (they
are their own inverse). Furthermore, they can be naturally generalized to 3D with a plane as mirror and
a non-incident point as center; and they have as particular cases, classic euclidian reflections and central
inversions.

We need a basic fact about harmonic reflections which we call Klein’s triangle lemma, because it associates
a Klein group (of four elements) to a triangle. It follows directly from the fact that projections preserve
harmonic ranges; we leave its proof as an exercise.

Lemma 1 (Klein’s triangle). Given a triangle, the composition of the three harmonic reflections with one
vertex as center and the opposite side as mirror is the identity.

Let us now address the pairing between harmonic curves and harmonic bundles.

Theorem 2 (Duality curves-bundles). Points in a harmonic curve are paired (in bijective correspondence)
by incidence with the lines in the harmonic bundle defined by its generating tangents.

Proof. If C is the harmonic curve generated by the points A,C,B,D, and a, c, b, d are their respective
generating tangents, we will prove that the pairing by incidence between the defining points and lines
(expressed as upper and lower case), extends to all the points in the curve and the lines in the corresponding
harmonic bundle C∗.
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In Figure 4.b, the dual construction to obtain the bundle is depicted. By Klein’s triangle lemma (Lemma 1)
on the triangle LXY (where L = a ∧ b), with respective opposite sides `xy, we have that

C · ρX,x = C · (ρL,` · ρY,y) = (C · ρL,`) · ρY,y = D · ρY,y ,
where we act and compose on the right, and denote both with “ · ”.

Therefore, for X 6= A,B, we can also express Z as C · ρX,x = D · ρY,y because Z was defined in (1) as the
intersection of the lines from the center of the harmonic reflection to the point acted upon, on both sides of
the equation. The dual expressions for the line

z = c · ρX,x = d · ρY,y = (c ∧ x) ∨ (d ∧ y) ,

yield that for each generic point, Z = C ·ρX,x, in the harmonic curve C, there is an incident line, z = c ·ρX,x,
called its tangent, in the harmonic bundle C∗ because they are the image of the incident pair C ∈ c under
the same harmonic reflection ρX,x. �

As a corollary to the proof we must remark that, with the notation of Figure 4.b used in the preceding
theorem, the harmonic curve can also be expressed as

(2) C = {C · ρX,x |X ∈ ` \ {A,B} } ∪ {A,B} ,
where the points A and B must be excluded as parameters of the first set, in order to have the harmonic
reflection ρX,x well defined; but then, they must be added back again to obtain C. Recall that the line x
was defined as x = L ∨ Y , where L = a ∧ b and Y is the fourth harmonic of X ∈ ` = A ∨B with respect to
A,B; so that all the harmonic reflections, ρX,x, used in (2), interchange the points A and B as well as their
generating tangents a and b. They send C to a point in the harmonic curve C. But moreover, we will see
that they are symmetries of all of C. The pairing X ↔ x of points in ` and lines through L, is yet another
example, other than Theorem 2, of the “polarity” that a harmonic curve induces on the plane. To sate this
properly, we need the definition:

A polarity is a pairing of points and lines (the terms pole and polar are used) that preserves incidence (or
reverses inclusion)1.

Theorem 3 (Polarity). A harmonic curve C induces a polarity (expressed by upper and lower case of the
same letter) satisfying:

i) P ∈ C ⇔ P ∈ p .
ii) If P 6∈ C then the harmonic reflection ρP,p, with P as center and its non-incident polar line p as

mirror, leaves C invariant.

We have already seen item (i) as Theorem 2; tangent lines to a harmonic curve are defined as their polars.
The rest of the proof will be given towards the end of the next section; for the moment, let us make three
pertinent remarks about the theorem itself.

First, two mathematicians directly associated to this theorem are Jean-Victor Poncelet and Karl G. C.
von Staudt. The first, proved the relation of poles and polars of conic sections with harmony, and the second,
soon after, developed polarities as a general concept and used it as an alternative way to define conic curves
within projective geometry and with no relation to metric or algebraic considerations. This definition is the
one Coxeter uses in his influential book [3], and calls it “most appealing” because it has duality built into
it. Two types of polarities must be precised: euclidian when no point is incident with its polar line, and
hyperbolic when there exist pole and polar incident pairs; the terms are then related to the groups generated
by harmonic reflections on non-incident polar pairs. Von Staudt’s definition is equivalent to item (i) of the
theorem in a hyperbolic polarity, while Poncelet’s results can be rephrased as item (ii).

Second, as examples of polar pairs, we have named lines and points in Figure 4.b according to the upper
and lower case rule for poles and polars with respect to the displayed harmonic curve.

Third, in terms of the polarity induced by a harmonic curve, the point quadruples that generate it as
such, are those for which the pole of the line of one pair is incident with the other line (in Figure 4.b:
(c ∧ d) ∈ (A ∨ B) = ` and thus, L = (a ∧ b) ∈ (C ∨ D), see also Figure 2.b). They could rightfully be
called harmonic quartets in C; and in the Klein-Beltrami model of the hyperbolic plane, they correspond to
extremes or “points at infinity” of perpendicular lines. In the circle, they are called “cyclic quadrangles” (?).

1An extra hypothesis is used in [3]; namely that for some line, the pairing of its point range to the line pencil of its pole be

a projectivity. But we do not need to stress this issue.
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3. Ruled surfaces

Our approach to prove the polarity theorem (3) is inspired by Germinal Pierre Dandelin’s proof of Pascal’s
hexagonal theorem, [4]. He considers the plane within three dimensional space and then makes his arguments
there. Of course, this general idea is classic. It is typified by Desargues’ theorem which becomes almost
obvious in three dimensions, and it is quite useful to prove other basic results such as the projective invariance
of harmony. It is a natural idea because perspective, as a basic source of projective geometry, makes little
sense without three dimensions. Also, conic sections use three dimensional space to be defined in the classic
way, but in Dandelin’s proof, instead of circular cones, ruled surfaces are used.

We first review Hilbert and Cohn-Vossen’s construction of ruled surfaces in [5], which appeared in print
almost a century after Dandelin’s proof, and made clear that they can be defined depending only on incidence.

Consider two lines, say a and b, in three dimensional projective space. They touch if and only if they are
coplanar. If this is not the case, they can be called a generating pair because for any point X not in them,
there is a unique line through X transversal (i.e., with a common point) to a and b; namely,

(X ∨ a) ∧ (X ∨ b) ,
where we are extending the use of the operations ∨ and ∧ to all flats, which is their natural environment.

Now consider three lines a, b, c in general position (i.e., each pair is generating). The transversal ruling
to a, b, c is the set of lines that are transversal to them (i.e., that touch the three); any such set of lines will
be called a ruling (see Figure 5.a) and its elements are called rules. If we denote it R = R(a, b, c), the above
observation implies that R is parametrized by incidence with the points in any of the three generating lines
(through any point in them there pases a unique rule). It will be important to note that, dually, R is also
parametrized by planes containing one of the lines; if we denote planes by greek letters (points and lines are,
respectivelly, upper and lower case latin) we have, for example, that

(3) R(a, b, c) = { (b ∧ α) ∨ (c ∧ α) | a ⊂ α } .
Every pair of rules in R is generating; otherwise, their three transversal lines a, b, c would be coplanar.

Thus, for any triplet a′, b′, c′ ∈ R we get a transversal rulling R′ = R(a′, b′, c′) that contains the original
three lines, a, b, c; this ruling is an extension of a, b, c (see Figure 5.b). In real projective space (the one
outlined by Desargues according to our spatial experience and intuition, by incorporating a plane at infinity
to euclidian space), it is true that there is only one extension to a ruling of three lines in general position.
But there is no simple, or elementary, proof of this fact. Therefore, we state it as an axiom that will be
proved to be equivalent to Pappus Theorem and other classic statements that have been used as axioms.

Axiom of double rulings.2 Three lines in general position belong to a unique ruling.

Figure 8. a) The transversal ruling (in blue) to three red lines. b) The transversal ruling to any
three blue rules (in red) contains the three red lines.

The name arises because this axiom immediately implies that rulings are paired: any ruling comes with
an opposite ruling (the transversal ruling to any triplet of its rules). The doubly ruled surface (we also refer
to it simply as a ruled surface) obtained as the union of the rules in a ruling is also the union of the rules in

2In Spanish, we call this axiom “Axioma del Equipal”, refering to a classic, mexican style of furniture that uses double

rulings for bases.
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its opposite ruling. They are usually called hyperboloids of one sheet, but also the hyperbolic paraboloids
are a special type (they are tangent to the plane at infinity).

Every point on a ruled surface has a tangent plane associated to it: the one generated by the unique rules
through the point in the two rulings of the surface. If we consider it as its polar plane, this association gives
rise to a full scale polarity : a pairing between points and planes that preserves incidence. That is, we now
prove a three dimensional analogue of the Polarity Theorem (3):

Theorem 4 (Polarity of ruled surfaces). The pairing of points in a ruled surface S with their respective
tangent planes, extends to a polarity of projective space, in which if P 6∈ S then P is not incident with its
polar plane π, and the harmonic reflection ρP,π, with P as center and π as mirror, leaves S invariant.

Proof. Consider a specific ruling R. It has an opposite ruling R′ and the doubly ruled surface they define is

S =
⋃
x∈R

x =
⋃
y∈R′

y .

The basic observation that guides the proof is that any point P not in S and, dually, that any non-tangent
plane π, induce natural abstract bijections (or matchings) between the two rulings of S by incidence:

(4)

R (P )←−→ R′
x↔ y
m

P ∈ x ∨ y

,

R (π)←−→ R′
x↔ y
m

x ∧ y ∈ π

.

So that the polarity induced by S that we seek is the one in which P and π are a polar pair if and only if their
corresponding abstract matchings by incidence (4) between opposite rulings are identical. And moreover, we
have to prove that this matching is also induced by a global geometric map: the harmonic reflection ρP,π,
with P as center and π as mirror.

To define the polarity induced by S in its complement, consider a point P 6∈ S —we could start, dually,
with a non-tangent plane. Fix three rules a, b, c in the ruling R, and beware that we have inverted the
notational use of primes: their transversal ruling is now R′.

Let α = a ∨ P . In view of (3), there is a well defined rule a′ ∈ R′ for which P ∈ a ∨ a′ = α (namely,
a′ = (b ∧ α) ∨ (c ∧ α) which is the line that corresponds to a under the matching (P ) in (4)); let A = a ∧ a′.
Analougously, we obtain b′, c′ ∈ R′, for which P ∈ b ∨ b′ = β and P ∈ c ∨ c′ = γ; let B = b ∧ b′, C = c ∧ c′.
To have the same matchings (4), the polar plane to P has to be defined as

π = A ∨B ∨ C .

Observe that if we had started, dually, with this plane π we would have found P as the intersection of the
three tangent planes.

Now, we will show that the harmonic reflection with P as center and π as mirror, ρP,π, interchanges
the lines a, b, c with the corresponding a′, b′, c′ in the opposite ruling. By the triangular symmetry of the
construction, it will be enough to prove that:

• in the tangent plane to A, α = a ∨ a′, the pair of lines a and a′ are harmonic to A ∨ P and α ∧ π;

because this happens if and only if ρP,π interchanges the lines a and a′.
We have distinguished, within the general setting of a doubly ruled surface, what we will call a Dandelin

configuration: six lines of two types or colors, three of each —red and blue in the pictures, or unprimed and
primed in the text— such that a pair of them touch if and only if they have opposite types. This produces
nine basic points and nine tangent planes by the “wedge” (∧) or “join” (∨) of lines of different colors; but
it also comes with a derived configuration of other lines and planes that naturally arise from them. That
geometric-combinatorial richness is what Dandelin exploited in [4]; and we follow suit.

The tangent plane α = a ∨ a′ contains five of the nine basic points of our Dandelin configuration. The
α-quadrangle:

a ∧ b′, b ∧ a′, a ∧ c′, c ∧ a′ ,
with its center A = a ∧ a′ where its diagonals a and a′ meet. We shall see that the remaining four basic
points outside of α, group naturally into two pairs whose generated lines are concurrent with the two pairs
of opposite sides of the α-quadrangle.
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One pair is b ∧ c′ and c ∧ b′, whose line ((b ∧ c′) ∨ (c ∧ b′)) passes through P because it is precisely β ∧ γ.
To see this, observe that both points lie on both planes (this argument will be repeatedly used), and by
construction, we have α ∧ β ∧ γ = P (see Figure 6.a). Therefore, within α:

P = (α ∧ β) ∧ (α ∧ γ) = ((a ∧ b′) ∨ (b ∧ a′)) ∧ ((a ∧ c′) ∨ (c ∧ a′)) .
The remaining pair of points are b∧ b′ = B and c∧ c′ = C. They are both on the tangent planes b∨ c′ and

c∨ b′ (see Figure 6.b). Therefore, these two planes meet α in Q = (B ∨C)∧ α; which can also be expressed
as the intersection of their intersecting lines with α:

Q = (α ∧ (b ∨ c′)) ∧ (α ∧ (c ∨ b′)) = ((b ∧ a′) ∨ (a ∧ c′)) ∧ ((c ∧ a′) ∨ (a ∧ b′)) .

Figure 9. a) A Dandelin Configuration with a fixed matching of the two types of rules, given by
the point P and the plane π = A ∨ B ∨ C. b) The harmonic pencil a,A ∨ P, a′, α ∧ π = A ∨ Q,
centered at A = a ∧ a′ in the plane α = a ∨ a′.

The configuration in α that we have described, consisting of 7 points and 8 lines, proves (according to
Figure 1.b) what we wanted: a and a′ are harmonic with respect to A ∨ P and A ∨Q = α ∧ π.

Thus, ρP,π interchanges the rules a and a′. Analogously, it interchanges b, c with b′, c′ respectively. Then,
it gives a bijection between the transversal rulings of a, b, c and a′, b′, c′, which are R′ and R respectively,
because a line transversal to a, b, c is sent by ρP,π to a line transversal to a′, b′, c′ and viceversa. In particular,
since a harmonic reflection sends a line to a line concurrent with the mirror and coplanar with the center,
this geometric bijection corresponds to the abstract matchings (4); thus, the polar plane π to the point
P 6∈ S does not depend on the choice of generating rules a, b, c.

Therefore, ρP,π leaves S invariant, as we wished to prove.
Finally, we have to prove that the constructed pairing between points and planes preserves incidence. Let

us denote the now well defined polar plane of any point X by X⊥.
Let P and Q be two points such that Q ∈ P⊥, we are left to prove that P ∈ Q⊥.
It has to be argued in cases. The first one is when both P and Q are in S, but then Q ∈ P⊥ iff they

belong to the same rule, because S ∩ P⊥ is the union of the two rules at P . The case when one point is in
S and the other is not, has been dealt with. For we have just used that given P 6∈ S, the criterion which
determines if Q is in S ∩ P⊥ is precisely P ∈ Q⊥. So, we are left to prove the generic case in which P and
Q are not in S.

It is not hard to argue that within the plane P⊥, there exists a line ` that passes through Q and contains
two different points A,B in S. Let a, a′ (and b, b′) be the two rules of S that pass through A (B). Then,
A ∈ P⊥ and B ∈ P⊥ imply

(5) P ∈ A⊥ ∧B⊥ = (a ∨ a′) ∧ (b ∨ b′) = (a ∧ b′) ∨ (b ∧ a′) .
Both points in the last expression are in S. Furthermore, we have that (a ∧ b′) ∈ Q⊥ because Q ∈ ` =
A ∨B ⊂ (a ∨ b′) = (a ∧ b′)⊥; and likewise (b ∧ a′) ∈ Q⊥. Therefore, (5) implies P ∈ Q⊥. �

Observe that, because of the incidence invariance, the polarity extends naturally to a pairing of lines. The
polar of a line ` is the intersection `⊥ of all the polar planes of its points, or of any two of them.

This polarity theorem asserts that what one sees as the contour of a ruled surface is exactly its section
with the polar plane of the viewpoint. Sections and projections match. We now prove that they are harmonic
curves, and the corresponding harmonic bundles are the projection of the rulings.
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Proof of Theorem 3. Consider a harmonic curve, C, in a plane π. Our basic aim is to prove that

• there exists a ruled surface S that has C as a section,

that is, such that C = S ∩π. In the process, we will obtain the desired polarity in π to complete the proof of
the Polarity Theorem and moreover, it will yield that any such section of a ruled surface with a non-tangent
plane is a harmonic curve.

By definition, C is generated by four points A,C,B,D in general position and paired diagonally. As before,
let a and b be the generating tangents at A and B, respectively; and let L = a∧ b, ` = A∨B. Observe that
D = C · ρL,`, so that giving a and b through A and B respectively, is equivalent to knowing D.

Choose two points P and S not in π and colinear with L (see Figure 7.a). These points are enough to
construct the desired ruled surface S; P will be the pole of π with respect to S, and S will be a point in it.

Let S′ be the fourth harmonic of S with respect to P and L; that is, S′ = S · ρP,π. Since S 6= S′,
the four lines from S and S′ to A and B can be colored red and blue so that only lines of opposite colors
touch. And finally, consider the red (blue) line through C transversal to the two blue (red) lines. We now
have a Dandelin configuration of six lines colored red and blue: let S be the doubly ruled surface it defines
(Figure 7.b). By construction, P and π = P⊥ are a polar pair with respect to S.

Figure 10. a) A Dandelin Configuration arising from the generators of a harmonic curve C in a
plane π. b) The corresponding ruled surface that intersects π in C.

The polarity induced by S restricts naturally to a polarity in the plane π as follows: the polar line of a
point in π is the intersection of its polar plane with π; and the pole of a line in π is the pole of the plane it
generates with P —or the intersection with π of its polar line.

Since harmonic reflections preserve the planes through their center, those for non-incident polar pairs with
pole in π, restrict to harmonic reflections of π that leave S ∩ π invariant. Therefore, item (ii) of Theorem 3
follows when we prove that C = S ∩ π.

To see this, recall the description (2) of C. It is a parametrization with points X ∈ ` = A∨B: for X 6= A,B
the corresponding point in C can now be written C · ρX,X⊥ . We can also view it as a parametrization of C
with the planes X⊥ about `⊥ = S ∨ S′ = L ∨ P . Let c be one of the rules of S at the point C, say the red
one. The point C · ρX,X⊥ can then be obtained by taking the blue rule at c ∧X⊥ and intersecting it with

π; and this description extends to X⊥ = A⊥, B⊥ to give A and B (see Figure 7). Since X⊥ 7→ c∧X⊥ pairs
planes about `⊥ with points in c, we conclude that points in C are bijectively parametrized with blue rules
via intersection with π, which is precisely S ∩ π. �

Observe that, within the above framework, for any point in S ∩ π the intersection with π of its tangent
plane to S is the projection to π from P of any of its two rules. So that we may state the following theorem
as a corollary to the preceding proofs.

Theorem 5. Harmonic curves are the sections of ruled surfaces with non-tangent planes. Moreover, har-
monic bundles are the projection of rulings, and the dual harmonic bundle of a section of a ruled surface is
the projection from the corresponding pole of any of its two rulings. �

4. Classic theorems

We have seen that an alternative definition of a conic section is as the intersection of a doubly ruled
surface with a non-tangent plane. This description was Dandelin’s idea to prove Pascal’s hexagon theorem
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in [4], and then to consider the alternately colored rules of the surface that an inscribed hexagon in the
conic produces; which we have called a Dandelin configuration. The proof of Pappus hexagon theorem,
which has the same conclusion than Pascal’s, is from a certain point on, literally the same; but the plane
to be considered is a tangent one. We prefer to detail this latter case, for it will expose as a corollary, the
equivalence of the axiom of double rulings with the most classic of projective theorems.

Theorem 6 (Pappus). Pairs of opposite sides of a hexagon whose vertices lie alternatively in two coplanar
lines, meet in collinear points.

Proof. Let A1, B3, A2, B1, A3, B2 be the, cyclicly ordered, vertices of such a hexagon (see Figure 9.a). We
have named them so that A1, A2, A3 lie in a line, b0 say, and the vertices Bi lie in a line a0; let O = A0 =
B0 = a0 ∧ b0. If we define for {i, j, k} = {1, 2, 3} the Pappus points of the hexagon to be:

(6) Pi = (Aj ∨Bk) ∧ (Ak ∨Bj) ;

we must prove that P1, P2, P3 are collinear.
Going out to a third dimension, choose two auxiliary generating lines a1, a2 that intersect the plane

π = a0 ∨ b0 in A1, A2 respectively. Let us color a0, a1, a2 red, as opposed to the rules in their transversal
ruling, which we color blue. Let b1, b2, b3 be the blue rules through B1, B2, B3 (∈ a0), respectively. Finally,
let a3 be the red line through A3 ∈ b0 transversal to b1 and b2. By construction, all opposite colored lines
meet except maybe a3 and b3; but these two lines meet by the double rulings axiom (one could extend
a0, a1, a2 to a ruling using, b0, b1, b3 or b0, b2, b3 instead of b0, b1, b2 as we did).

Now we have a Dandelin configuration outside of π. And from it, and (6), we get for {i, j, k} = {1, 2, 3}:
Pi = ((aj ∨ bk) ∧ π) ∧ ((ak ∨ bj) ∧ π)

= ((aj ∨ bk) ∧ (ak ∨ bj)) ∧ π
= ((aj ∧ bj) ∨ (ak ∧ bk)) ∧ π .

(7)

Therefore (see Figure 9.b), the Pappus points P1, P2, P3 lie in the line

((a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (a3 ∧ b3)) ∧ π .

�

Figure 11. a) Pappus theorem and (b) Dandelin’s proof.

Theorem 7. The double ruling axiom is equivalent to Pappus theorem.

Proof. We have just proved Pappus theorem using the double ruling axiom. Now assume that Pappus
theorem holds.

The double ruling axiom is clearly equivalent to the following statement: if four lines belong to a ruling,
then a rule in the transversal ruling of three of them also touches the fourth. That is,

b0, b1, b2, b3 ∈ R(a0, a1, a2) and a3 ∈ R(b0, b1, b2) ⇒ a3 touches b3 .

So lets suppose that a0, a1, a2, a3 are mutually generating red lines and b0, b1, b2, b3 mutually generating blue
lines, and that we know that all opposite colored pairs meet except for a3 and b3; we must prove that they
also meet.
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Let Ai = ai ∧ b0 and Bi = bi ∧ a0, for i = 1, 2, 3. By Pappus theorem in the plane a0 ∨ b0, the three
“Pappus points” (6) lie in the “Pappus line” p. The case of (7) that still holds is

P3 = ((a1 ∧ b1) ∨ (a2 ∧ b2)) ∧ π .
Consider the plane δ = p∨ (a1 ∧ b1) = p∨ (a2 ∧ b2), with lines `1 = P1 ∨ (a2 ∧ b2) and `2 = P2 ∨ (a1 ∧ b1) (in
Figure 8.b, δ is the green plane).

Let W = `1 ∧ `2; it is a well defined point because both lines are in the plane δ due to Pappus theorem.
To see that W ∈ a3, consider the planes a3 ∨ b1, a3 ∨ b2 and δ. Using (6), one gets that their pairwise
intersection lines are a3, `1 = (a3 ∨ b2) ∧ δ and `2 = δ ∧ (a3 ∨ b1). Since these three planes meet in a single
point, we get that a3 passes through W . Analogously, W ∈ b3 because W is the meeting point of the planes
a1 ∨ b3, a2 ∨ b3 and δ. Therefore, a3 meets b3 in W . �

For completeness sake, we reproduce Dandelin’s original proof of Pascal’s theorem, [4]; which, by the way,
seems to be the first traceable one in the literature.

Theorem 8 (Pascal). Pairs of opposite sides of a hexagon whose vertices lie in a harmonic curve, meet in
collinear points.

Proof. Let A1, B3, A2, B1, A3, B2 be the vertices of such an hexagon; the cyclic order is according to the
hexagon and have nothing to do with the conic curve C on which they lie. By Theorem 5, there exists a
doubly ruled surface S that cuts the plane in C. For i = 1, 2, 3, let ai be the rules of one of its rulings that
pass through Ai, and bi the rules in the opposite ruling that contain Bi. The argument now follows verbatim
the one we used for Pappus theorem, once the Dandelin configuration (without a0 and b0) is produced. �

A final classic theorem worth mentioning because it is frequently used, is the following. We should stress
that the referred points are completely general, and not a harmonic quadruple, so that one more is needed.

Theorem 9. Through five points in general position in a plane, there passes a unique harmonic curve.

Proof. Color three of the points red and two blue. Consider two generating blue lines that cut the plane
in the blue points. The three red lines incident to the red points and transversal to the chosen blue lines,
generate a ruled surface that cuts the plane in a harmonic curve containing the five points.

Uniqueness has two aspects. The first is combinatorial. Once there is a chosen surface, for any 3-2 coloring
of the points, there is a precise choice of blue lines that yields the exact same surface. That it does not
depend on the chosen surface follows from a construction within the plane based on Pascal’s theorem. We
briefly outline it.

Choose a linear order for the five points. There remains to find the possible sixth point that closes a
hexagon which satisfies the conclusion of Pascal’s theorem. The chain of five points with four lines between
them, determines one of the three Pappus points, P1 say (the meet of the two extreme lines). Of the other
two Pappus points, there are lines already defined on which we know they must lie. So that lines through
P1 give the other two possible Pappus points by intersection; and from them, the corresponding sixth point
can be found. This parametrizes the curve with lines about P1. �

5. Projectivities

6. Axioms for projective geometry
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