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1. INTRODUCTION

Perspective is one of the most highly esteemed achievements of the Renaissance. The
artists of that iconic period, focused on how to draw realistically, made important dis-
coveries in how do we perceive three dimensional space, [1]. That knowledge became the
cornerstone for the foundation of projective geometry within mathematics, two centuries
later. It is attributed to Girard Desargues, who was a coetaneus fellow countryman of
Rene Descartes; so that it parallels the dawn of analytic geometry. However, in edu-
cational terms, we mathematicians have left that cultural heritage in the realm of the
artistic curriculum, and barely exploit it in ours; Desargues, compared to Descartes, is
barely known. Why don’t we tell kids that ellipses are what we see, when we look at a cir-
cle? Or, how we should draw it? Teachers prefer the general and ambiguous term oval for
such curves, because they are not quite sure of this assertion. Furthermore, professional
mathematicians may doubt for a minute about it, because there is no standard easy proof

of it in our curricular memory. Conics are defined by their metric or algebraic properties,
1
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and not as circles in perspective. The concept of harmony, may be the path to achieve
such a simple understanding of conics; and to appraise with it both the deep cultural
interaction of art and mathematics, and the influence of projective geometry within it.

2. HARMONY

Defined as a special case of the cross ratio as we still teach it today, harmonicity seems
to have been first used by Apolonius related to conics (see e.g. [2]). However, it was
observed to be a non metric concept deeply related to perspective until the XIX century
by Christian Von Staudt, [7]. It can be defined as follows.

Four concurrent lines form a harmonic pencil if there is a parallelogram with two of
them as sides, a third as diagonal and the fourth parallel to the other diagonal; the
concurrency point is called its center; O in Figure l.a. It is a projective notion because
the role played by the line at infinity, may be assumed by any line A not incident with O,
called the horizon, to define the equivalence relation of parallelism as concurrency with
h, as in Figure 1.b. A harmonic range is the intersection of a harmonic pencil with a line
not incident with its center (e.g., the four points in A in Figure 1.b, divided into two pairs
coming from “sides” versus “diagonals”).
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FIGURE 1. a) A harmonic pencil with a parallelogram construction. b) Paral-
lelism may be defined by any horizon not through the concurrency point.

Dual geometric constructions that yield the harmonic conjugate of a point (or line)
with respect to a colinear (concurrent) pair of points (lines), follow from the definitions.
These constructions are also referred to as the harmonic fourth, because they produce a
harmonic range (pencil) out of three of its elements, with one distinguished.

Harmonicity is preserved by projections. It is independent of the point of view, in
the sense that all points outside the support (line) of a harmonic range “see” it as har-
monic. However, if four points in general position are considered, some points see them
as harmonic but most don’t.

Define the harmonic curve generated by four points in general position and partitioned
into two pairs, to be the locus of points that see them as harmonic, that is, which are the
center of a harmonic pencil that contains them. There are generic points (Figure 2.a),
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different from the generators, whose lines to them form a harmonic pencil, and the gener-
ators which “see themselves” in the harmonic fourth of its lines to the other three (the one
in their pair, distinguished); these lines are called the generating tangents (Figure 2.b).

a) b)
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FIGURE 2. a) The harmonic curve generated by four points, two red and two
blue; b) they belong to the harmonic curve because of their tangent lines.

From this, a dual counterpart arises naturally:

The harmonic bundle generated by four lines in general position (no three collinear) and
partitioned into two pairs, is the set of lines that see (or feel) them as harmonic, that is,
that contain a harmonic range transversal to the lines. Again, the generic lines intersect
the generators in a harmonic range, and the generating lines “choose” the harmonic fourth
of their intersection with the other three, to “represent” them; it is their contact point.
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Let us postpone the proof of the natural correspondence between harmonic curves and
bundles, to address our main issue.

Theorem 1. Conics are harmonic curves.

Proof. First observe that the vertices of a square paired diagonally, generate its circum-
scribed circle as harmonic curve; it is a high-school exercise (see Figure 3.a). Then,
because harmonicity is preserved by projections, the plane section of any cone with a
circle as base, is the harmonic curve of the projected generators of the circle (see Fig-
ure 3.b). And conics are, by their classic definition, such sections for perpendicular, or
straight, cones. 0



6 JOSE LUIS ABREU AND JAVIER BRACHO

a) b)
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FIGURE 3. a) A circle is the harmonic curve generated by the extremes of
two perpendicular diameters. b) The projection of a harmonic curve is also a
harmonic curve; hence, conics are harmonic curves.

A gap in this proof is that it assumes that no other point outside the circle belongs
to the harmonic curve. This will be taken care of with the following construction of a
harmonic curve.

Given four points in general position and partitioned into the pairs A, B and C, D, let
C denote the harmonic curve they generate, and let ¢ be the line through A and B (see
Figure 4.a). Given a point X € £, let Y be its harmonic fourth with respect to A, B. Let
Z be the intersection of the lines XC and Y D. A better notation that we will adopt is

(1) Z=(CVX)AN(DVY);
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where V, “join”, denotes the linear generating (or closure) operator and A, “meet” is
intersection. Then, Z sees the generators as harmonic (Z € C), because its lines to them
intersect ¢ in the harmonic range A, X, B,Y (observe that it is written so that the pairs
are not consecutive, which is the cyclic order with which they appear on ¢). As X moves
along ¢, Z traces all of C, because in the line X V C' there is no point in C, other than Z or
C'. This implies that C is bijectively parametrized by the projective line ¢; or equivalently,
by the concurrent pencil of lines centered at C'. So that the circumscribed circle is indeed
the harmonic curve of the vertices of a square, paired diagonally.

FIGURE 4. a) The construction of a harmonic curve. b) The dual construction
for its harmonic bundle. The point Z and the tangent line through it, z, are the
image of D and its tangent line, d, under the harmonic reflection with mirror
y =XV L and center Y.
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With a dynamic geometry system having the harmonic fourth built in as a tool (such
as ProGeo3D, [6], used to produce the figures), this construction is quite simple. Tt
also derives into insightful examples of parabolas and hyperbolas by sending some of the
starting elements of the construction to infinity.

We have proved that circles drawn in perspective are the classic conic curves. Now, the
three types fall into where the observer may be. If she is outside the circle, she sees an
ellipse; from the inside, he sees a hyperbola, and the parabola (having the line at infinity
as a tangent) is the unstable passage from one case to the other.

To see that harmonic curves are paired naturally with harmonic bundles, we need yet
another important basic concept associated with harmony. Given a line m and a point
C' & m, the harmonic reflection with mirror m and center C, denoted pc,,, is the map
from the projective plane to itself that sends a point to its harmonic fourth with respect
to C' and the intersection with the mirror m of its line to C.

In other words, consider the harmonic fourth with respect to a pair of points (or with
that “mirror pair”), as a map of a projective line to itself, then glue these maps on the
pencil of lines about the center C' with the other mirror point at the mirror m which
thus remains pointwise fixed; close to the mirror it looks as a reflection and close to
the center as a central inversion. Of course, harmonic reflections are colinearities (send
lines to lines), their duals are also harmonic reflections (with roles interchanged) and are
involutions (they are their own inverse). Furthermore, they can be generalized naturally
to 3D with a plane as mirror and a non-incident point as center; and they generalize
classic euclidian reflections.
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We need a fact about harmonic reflections which we call Klein’s Triangle Lemma,
because it associates a Klein group (of four elements) to a triangle. It follows directly
from the fact that projections preserve harmony; we leave its proof as an exercise.

Lemma 1 (Klein’s Triangle). Given a triangle, the composition of the three harmonic
reflections with one vertexr as center and the opposite side as mirror is the identity.

To end this section, let us address the correpondence between harmonic curves and
bundles. If C is the harmonic curve generated by the points A, C, B, D, and a, ¢, b, d are
their respective generating tangents, we will prove that the points in the curve and the
lines in the corresponding harmonic bundle are paired by incidence. In Figure 4.b, the
dual construction to obtain the bundle is depicted. By Klein’s Triangle Lemma on the
triangle LXY (where L = a A b), with respective opposite sides fzy, we have that

C-pxe=0C-(pre-pyy) = (C-pre) pvy =D pyy,

where we act and compose on the right, and denote both with “-”. Therefore, Z can also
be expressed as Z = C - px, = D - py, because it was defined in (1) as the intersection
of lines from the center of the harmonic reflection to the point acted upon, on both
expressions. The dual expressions for the line

z=c pxe=d-pyy=(xAc)V(yAd),

yield that for each point (Z = C' - px ) in the harmonic curve C, there is an incident line
(2 = ¢ px) in the harmonic bundle generated by a,c, b, d, because they are the image
of the incident pair C' € ¢ under the harmonic reflection px .
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3. POLARITIES, RULED SURFACES AND DANDELIN’S CONFIGURATION

The first to give an intrinsically projective definition of conics was, again, Christian
Von Staudt in [7]. It is the one Coxeter uses in his influential book [3], and calls it “most
appealing” because it has duality built into the definition. It relies on the notion of a
polarity: a pairing of points and lines (the terms pole and polar are used) that preserves
incidence (or reverses inclusion)!. A polarity may be hyperbolic if there exists a point
incident to its polar line; otherwise it is called euclidian (no line contains its pole); and
the terms refer to the type of geometry that can be associated to them. The alternative
definition of conic curve is then “the points incident with their polar line in a hyperbolic

polarity”. But in our present approach, we must state it as a theorem:

Theorem 2 (Von Staudt’s Polarity Theorem). A harmonic curve C induces a polarity
(expressed by upper and lower case of the same letter) satisfying:
i) PeC< Pep.
ii) If P ¢ C then the harmonic reflection pp,, with P as center and its non-incident
polar line p as mirror, leaves C invariant.

We have already seen (i) as the pairing by incidence between a harmonic curve and
the harmonic bundle associated to its generating tangents. Then, by the preservation of
incidence, one can extend the polarity to the rest of the points and lines in the plane. But
we will do it with a more insightful and powerful approach. For the moment, observe that

TAn extra hypothesis is used in [3]; namely that for some line, the pairing of its point range to the line
pencil of its pole be a projectivity. But we do not need to stress this issue.
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lines and points in Figure 4.b have been named according to the upper and lower case rule
for poles and polars with respect to C. In particular, and in view of (ii) in the theorem,
that construction gives that the curve is obtained by applying to a fixed point (C') a one
parameter family of “symmetries” of the curve C (px, with X € (AV B)\ {4, B}), and
closing it with A and B.

In terms of the polarity induced by a harmonic curve, the point quadruples that generate
it are those for which the pole of the line of one pair is contained in the other line (in
Figure 4.b: (¢cAd) € (AV B) = ¢ and thus, L = (aAb) € (C'V D)). They could rightfully
be called paired harmonic quartets in C; and in the Klein-Beltrami model of the hyperbolic
plane, they correspond to extremes or “points at infinity” of perpendicular lines. In the
circle, they are called “cyclic quadrangles” (7).

Our global approach to the polarity theorem is inspired by Germinal Pierre Dandelin’s
proof to Pascal’s Hexagon Theorem, [4]. His idea is to use a three dimensional configura-
tion of six lines associated to a hexagon on a conic curve. Thus, viewed from today, it is
most convenient to first review Hilbert and Cohn-Vossen’s construction of ruled surfaces,
which appeared in print almost a century later, [5].

Consider two lines, say a and b, in three dimensional projective space. They touch
if and only if they are coplanar. If this is not the case, we call them a generating pair
because for any point X not in them, there is a unique line through X transversal (i.e.,
with a common point) to a and b; namely,

(XVa)A(X VD).
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Now consider three lines a, b, ¢ in general position (i.e., each pair is generating). The
transversal ruling to a, b, ¢ is the set of transversal lines to the three of them called rules;
and any such set of lines will be called a ruling (Figure 5.a). If we denote it R = R(a, b, ¢),
the above observation implies that R is parametrized by incidence with the points in any
of the three generating lines (through any point in them there pases a unique rule). It
will be important to note that, dually, R is also parametrized by planes containing one
of the lines; if we denote planes by greek letters (points are upper case and lines, lower
case latin) we have, for example, that

(2) R(a,b,c) ={(bAa)V(cANa)|laCa}.

Every pair of rules in R is generating; otherwise, their three transversal lines a, b, ¢ would
be coplanar. Thus, for any triplet a’, ¥, ¢ € R we get a transversal rulling R’ = R(d', V', )
that contains the original three, a, b, c; this ruling is an extension of a,b,c to a ruling
(Figure 5.b). In the real projective space (the one outlined by Desargues according to our
spatial experience and intuition), it is true that there is only one extension to a ruling of
three lines in general position. But there is no simple, or elementary, proof of this fact.
Therefore, we state it as an axiom that we suppose valid until further notice.
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a) b)

FIGURE 5. a) The transversal ruling (in blue) to three red lines. b) The
transversal ruling to any three blue rules (in red) contains the three red lines.

Axiom of double rulings.? Three lines in general position belong to a unique ruling.

The name arises because this axiom immediately implies that rulings are paired: any
ruling comes with an opposite ruling (the transversal ruling to any triplet of its rules).
The ruled surface (also called doubly ruled surface) obtained as the union of the rules in
a ruling is also the union of rules in its opposite ruling. Every point on a ruled surface
has associated a tangent plane: the one generated by the unique rules through it in the

%In Spanish, we call this axiom “Azioma del Equipal”, refering to a classic, mexican style of furniture
that uses double rulings for bases.
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two rulings of the surface. They are usually called hyperboloids of one sheet, but also the
hyperbolic paraboloids are a special type (the plane at infinity is their tangent).
Now, consider a specific ruling R. It has an opposite ruling R’ and the doubly ruled

surface they define is
S = U x = U Y.
zER yeER/

For every point P in S, consider its tangent plane as its polar plane. We will prove
that this pairing of points in the surface with their tangent planes, extends to a polarity
throughout space, that is, a pairing between points and planes that preserves incidence.
And furthermore, that the harmonic reflection associated to a non-incident polar pair
leaves S invariant (the analogue of Theorem 2).

The basic observation is that any point P not in &, and dually, that any non-tangent
plane 7, induce natural abstract matchings between the two rulings by incidence:

(P) (m)

R+ R R+ R

(3) <=y ’ <=y
T T

PexVvy TANyem

So that the polarity induced by S that we seek is the one where P and 7 are a polar pair
if and only if their corresponding matchings between opposite rulings are identical; and
moreover, that this matching is also induced by a global geometric map, in the sense that
the harmonic reflection pp ., with P as center and 7 as mirror, realizes it.
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To prove it, fix a point P ¢ & —we could start, dually, with a non-tangent plane.
Consider three rules a, b, ¢ in the ruling R (beware that we have inverted the notational
use of primes: their transversal ruling is now R’). In view of (2) with o = a VV P, there is
a well defined rule o’ € R’ for which P € a Vv d’ (it is the match for a under the matching
(P) in (3)); let A = a A d’. Analougously, we obtain V', ¢’ € R/, for which P e bV = f
and P€cVd =~;let B=bAV,C =cAc. Our choice of polar plane to P has to be

T=AVBVC(C.

Now, we show that pp, interchanges the lines a, b, ¢ with the corresponding o', V', ¢ in
the opposite ruling. By the triangular symmetry of the construction, it will be enough to
prove that:

e in the tangent plane to A, o = a VvV d’, the pair of lines a and a’ are harmonic to AV P
and o \ 75

because if this is so, the harmonic reflection of the line a with P as center and 7 as mirror
is a'.

We have now distinguished, within the general setting of a doubly ruled surface, what
we will call a Dandelin Configuration: six lines of two types or colors —red and blue in
the pictures, or unprimed and primed in the text— such that a pair of them touch if
and only if they have opposite types. This produces nine basic points and nine tangent
planes by the “wedge” (A) or “join” (V) of lines of different colors; but it also comes with
a derived configuration of other lines and planes that naturally arise from them. That
combinatorial richness is what Dandelin exploited in [4]; and we follow suit.
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The tangent plane o = a V ' contains five of the nine basic points of our Dandelin
Configuration, namely,

aNb,bAd,ancd,cNd

and, of course, the center A = a A @’ where the diagonals (a and a) of the previous
quadrangle meet. The remaining (outside of «) four basic points, group naturally into
two pairs that will relate nicely with the pairs of opposite sides of the above quadrangle.

One pair is b A ¢ and ¢ AV, whose line ((bA ')V (¢ AV')) passes through P, because it
is precisely 5 A (observe that both points lie on both planes), and a A B Ay = P (see
Figure 6.a). Therefore, within a:

P=(aAB)A(any)=((aANV)VOAd)AN(aN)V (cNd)).

The remaining pair of points is b A b = B with ¢ A ¢ = C. They are both on the
tangent planes bV ¢ and ¢V ' (see Figure 6.b). Therefore, these two planes meet « in
Q = (B V C) A a; which can also be expressed as the intersection of their intersecting
lines with a:

Q=(@NOVI))AN(aA(cVv)=(bAd)V(aN))A((cANd)V (aND)).
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a) b)

FIGURE 6. a) A Dandelin Configuration with a fixed matching of the two types
of rules, given by the point P. b) The harmonic pencil centered at A =aAda’ in
the plane o = a V a'.

The configuration in « that we have described, consisting of 7 points and 8 lines, proves
(according to Figure 1.b) what we wanted: a and a' are harmonic with respect to AV P
and AVQ=aAT.

Thus, pp. interchanges the rules a and a’. Analogously, it interchanges b, ¢ with v/, ¢/
respectively. Then, it gives a bijection between the transversal rulings of a, b, cand o', V', ¢,
which are R’ and R respectively; because a line transversal to a,b, ¢ is sent by pp. to a
line transversal to o', V', ¢ and viceversa. In particular, since a harmonic reflection sends
a line to a line concurrent with the mirror and coplanar with the center, this bijection
corresponds to the abstract matchings (3); and it does not depend on our choice of rules
a,b,c.
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Therefore, pp, leaves S invariant, as we wished to prove.

The proof that the defined pairing between points and planes preserves incidence, and
hence is the desired polarity induced by S, is straightforward; we skip it, since its details
add little to the picture. Except for the fact that it implies that the polarity extends
naturally to a pairing of lines. This pairing has all possible cases: two generating polar
lines which do not touch the surface; polar lines which cut the surface in two points, whose
tangent planes meet in the polar (many examples were used in the previous paragraphs);
tangent pairs of polar lines that meet and form a harmonic pencil with the concurrent
rules (an example is AV P and o A 7 above); and finally, lines which are self-polar (the
rules).

Now, we can turn our attention to the proof of Von Staudt’s Polarity Theorem.

Proof (of Theorem 2). Consider, in a plane m, a harmonic curve, C, generated by four
points A, C, B, D in general position and paired diagonally. Let a and b be the generating
tangents at A and B, respectively; and let L = aAb, { = AV B; observe that D = C'- pr, .

Choose a point P ¢ 7, to act as pole of m according to a ruled surface S to be con-
structed. And finally, choose a third point S in the line PV L, through which the surface
will pass.

Let S” be the harmonic fourth of S with respect to P and L; or equivalently S = S-pp .
Since S # 5’, the four lines from S and S’ to A and B, can be colored red and blue so
that lines of opposite colors touch. And finally, consider the red (blue) line through C
transversal to the two blue (red) lines. We now have a Dandelin configuration of six lines
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colored red and blue: let § be the doubly ruled surface it defines. By construction, P and
7 are a polar pair with respect to S.

FIGURE 7. a) A Dandelin Configuration arising from the generators of a har-
monic curve C in a plane 7. b) The corresponding ruled surface that intersects
7 in C.

The polarity induced by S restricts to a polarity in the plane 7: a point has as polar
line the intersection of its polar plane with 7; and a line has as pole, the pole of the plane
it generates with P. Since harmonic reflections preserve the planes through the center,
those for non-incident polar pairs with pole in 7, preserve the intersection of S and 7. So
this intersection has to be C because, as we saw right after stating Theorem 2, it can be
constructed by a family of such harmonic reflections, parametrized by ¢, and applied to
C (or D). O
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4. CLASSIC THEOREMS

We have somehow used an alternative definition of a conic curve as the section of a
doubly ruled surface with a non-tangent plane. This description was Dandelin’s idea to
prove Pascal’s Hexagon Theorem in [4], considering the alternately colored rules of the
surface that an inscribed hexagon in the conic produces. The proof of Pappus Hexagon
Theorem, which has the same conclusion than Pascal’s, is from certain point on, literally
the same; but the plane to be considered is a tangent one. We will detail this case first,
for it has the extra corollary of exhibiting the equivalence of the Axiom of Double Rulings
with the most classic of projective theorems.

Theorem 3 (Pappus). Pairs of opposite sides of an hexagon whose vertices lie alternately
m two coplanar lines, meet in collinear points.

Proof. Let Ay, Bz, As, By, A3, By be the, cyclicly ordered, vertices of such an hexagon (see
Figure 9.a). We have named them so that A, Ay, A3 lie in a line, by say, and the vertices
B; lie in a line ag; let O = Ay = By = ag A by. If we define,

(4) P, = (A; V By) N (Ax V By),

for {i,j,k} = {1,2,3}, we must prove that P, P,, P; are collinear.

Choose two auxiliary generating lines a1, ao that intersect the plane m = agVby in Ay, As
respectively. Let us color ag, a1, as red, as opposed to the rules in their transversal ruling,
which we color blue. Let by, bs, b3 be the blue rules through By, B, Bs (€ ag), respectively.
Finally, let as be the red line through Az transversal to b; and by. By construction, all
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opposite colored lines meet except maybe az and bsg; but these two lines meet by the
Double Rulings Axiom (one could extend ag, a1, as using by, by, bs).
Now we have a Dandelin configuration outside of 7. And from it, we get, for {7, j, k} =

{1,2,3}:

P,

((aj Vbg) At) A ((ak V bj) A )
((aj Vbg) A (ap Vb)) AT
((aj ANbj) V (ag Nbg)) A

—~

(@

~
I

Therefore (see Figure 9.b), the points P;, P, P; lie in the line

((a1 A b1> V (CLQ A bQ) V (CL3 N bg)) N T
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a)

FIGURE 8. a) Pappus Theorem and (b) Dandelin’s proof.

Theorem 4. The Double Ruling Axziom is equivalent to Pappus Theorem.

Proof. We have just proved Pappus Theorem using the Double Ruling Axiom. Now
assume that Pappus Theorem holds.

The Double Ruling Axiom is clearly equivalent to the following statement: if four lines
belong to a ruling, then a rule in the transversal ruling of three of them also touches the
fourth. That is,

bo, b1, bo, b3 € R(CL(), ai, CLQ) and ag € R(bo, b1, bg) = ag touches b3 .

So lets suppose that ag, a1, as, az are mutually generating red lines and by, b1, b, b3 mutu-
ally generating blue lines, so that all opposite colored pairs meet except for as and b3; we
must prove that they also meet.
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Let A; = a; ANby and B; = b; A aqg, for i = 1,2,3. By Pappus Theorem in the plane
ap V by, the three “Pappus points” (4) lie in a “Pappus line” p. The case of (5) that still
holds is

Py =((a1 ANby) V(ag Aboy)) A

Consider the plane 6 = pV (a3 Aby) = pV (az A by), with lines ¢; = P; V (a; A by) and
ly = Py V (ag A by). Finally, let W = {1 A ls; it is a well defined point because both lines
are in the plane ¢ thanks to Pappus. To see that W € as, consider the three planes ¢,
az V by and a3 V by. Using (4), one gets that their pairwise meeting lines are ¢, a3 and
U5, so that as passes through W. Analogously, W is the meeting point of the planes 9,
a1 V by and as V bs, so that W € bs; therefore, as meets b and the proof is complete. [

For completeness sake, we briefly reproduce Dandelin’s proof of Pascal’s Theorem, [4].

Theorem 5 (Pascal). Pairs of opposite sides of an hexagon whose vertices lie in a har-
monic curve, meet in collinear points.

Proof. Let Ay, Bs, As, By, A3, By be the vertices of such an hexagon; the cyclic order is
according to the hexagon and have nothing to do with the conic curve C on which they
lie. Assuming the Axiom of Doubly Ruled Surfaces —or equivalently, Pappus Theorem—
there exists a doubly ruled surface S that cuts the plane in C. For ¢ = 1,2, 3, let a; be the
rules of one of its rulings that pass through A;, and b; the rules in the opposite ruling that
contain B;. The argument now follows verbatim the one we used for Pappus Theorem,
once Dandelin’s configuration (without ag and by) is produced. O
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A final classic theorem worth mentioning is the following. Where we should stress that
the points are now completely general, and not a harmonic quadruple, and hence one
more is needed.

Theorem 6. Through five points in general position in a plane, there passes a unique
harmonic curve.

Proof. Color three of the points red and two blue. Consider two generating blue lines
that cut the plane in the blue points. The three red lines incident to the red points and
transversal to the chosen blue lines, generate a ruled surface that cuts the plane in a
harmonic curve containing the five points.

Uniqueness has two aspects. One is combinatorial. Once there is a chosen surface, for
any 3-2 coloring of the points, there is a precise choice of blue lines that yields the same
surface. That it does not depend on the chosen surface follows from a construction within
the plane based on Pascal’s Theorem, whose details are well known. 0

5. AXIOMS FOR PROJECTIVE GEOMETRY
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