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Abstract. We present some properties of the ellipse and use them to derive
Keplers laws for planetary motion. Our arguments rely on elementary classical
mechanics, in particular the conservation of energy, and angular momentum.

1. Introduction

Kepler showed, phenomenologically, that the planets move along ellipses and New-
ton derived from this that the central force must be proportional to the inverse
square of the distance, [8]. Later Newton’s universal law of gravity was taken as a
basic principle and Johannes Bernoulli proved that in a field of central attraction
where the force is proportional to the inverse square of the distance, the trajectories
are always conic sections [9]. Concerning Newton’s Principia we refer also to [2]
and [5].

This masterpiece of human achievement was retold many times and several different
approaches have been published, see for example [1, 3, 4, 6] or [7]. Our modest
contribution is aimed at providing a somewhat deeper understanding of the intimate
relations that exist between the geometric and the physical aspects of planetary and
projectile motion and to provide an alternative treatment of this subject which may
be of value in some cases.

Question. Given the location O of the atractive force ~F , the position P of the mass
m and the initial velocity ~v, how can the trajectory of the object be constructed?

It is assumed that the force is given as

(1) ~F =
GMm

r2
~r,

where ~r =
−−→
PO and r = |~r| is the magnitude of ~r. Throughout the article, we shall

use the notation of the magnitude of a vector by simply omiting the arrow over the
symbol.

The energy E is the sum of the kinetic and the potential energies:

(2) E =
1

2
mv2 − GMm

r
.

The sign of E is crcuial. For negative energy the trajectory is an ellipse, for positive
energy the trajectory is (one branch) of a hyperbola and if the energy is zero then
the trajectory is a parabola. We now set out to explain how these trajectories can
be constructed from the data given in the starting question.
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Theorem 1.1. Let O be the location of a force which attracts proportionally to the
inverse of the square of the distance (1) and P the position of a mass m with inital
velocity ~v. For illustration see Figure 1.
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Figure 1. The construction of the trajectory τ according to the
sign of the energy: (e) if E < 0, the trajectory τ is an ellipse, (h) if
E > 0, the trajectory τ is one branch of a hyperbola, (p) if E = 0,
the trajectory τ is a parabola.

(e) If the energy (2) is negative, then let R be the maximal distance m may
reach (in case ~v is parallel to OP ), that is

E =
1

2
mv2 − GMm

r
= −GMm

R
.

Let c be the circle with center O and radius R and let Q be the intersection
of c with the ray OP starting in O. Further let B be the reflection of Q in
~v (that is, the line passing through P and parallel to ~v). The trajectory of
m is the ellipse with foci O and B and major axis R.

(h) If the energy E is positive, then let R be such that

E =
GMm

R
.

Let c be the circle with center O and radius R and let Q be the intersection
of c with the ray PO starting in P . Further let B be the reflection of Q in



A GEOMETRIC APPROACH TO PLANETARY MOTION AND KEPLER LAWS 3

~v. The trajectory of m is the arm of the hyperbola with foci O and B and
major axis R which is closer to O.

(p) If the energy is zero, then let T be the reflection of O in ~v and let d be the
line through T which is perpendicular to PT . The trajectory of m is the
parabola with focus O and directrix d.

Remark 1.2. The key ingredient to prove Theorem 1.1 is that in all three cases (e),

(h) and (p), the velocity ~v′, in every point P ′, on the trajectory is perpendicular

to ~q′ =
−−→
BQ′ and v′ is proportional to q′. Here, Q′ is obtained from P ′ as Q is

from P and point B will not change. In the case of zero energy, B is the vertex
of the parabola, c is the circle with center O and radius |OB| and finally Q is the
intersection of c with ray PO starting in P , see Figure 2.
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Figure 2. The location of the points B, Q and the circle c in case (p).

The above results were found when we studied the projectile motion. Since the
results concering the latter are interesting on their own and can be proved using
similar techniques, we treat them in parallel. Thus, we consider the case of a

homogeneous force field, that is ~F = m~g holds at any position for a constant ~g. For
the sake of simplicity, we assume ~g to be “vertical” and “directed downwards”.

The mass m at position O has initial velocity ~v0. Decomposing the initial velocity
into a horizontal and a vertical part it is easy to see that the trajectories are
parabolas with vertical axis.

We consider the case where v0 is constant but the direction of ~v0 is variable, like a
canon shooting under different elevation angles. Let h be such that

1

2
mv20 = Gmh.

Let d be a horizontal line at height h above O. By setting the potential energy to
be Epot = Gmy, where y is the vertical distance below d, we force Epot to be zero
at d. The following result describes further properties of the possible trajectories.

Theorem 1.3. We assume the force field to be homgeneous. A mass m at position
O has initial velocity ~v0. Let h be such that 1

2mv20 = Gmh and let d be a horizontal
line at distance h above O. Let O′ be the point on d closest to O, that is, directly
above O. Let F be the reflection of O′ on ~v0 and τ the parabola with focus F and
directrix d. Then τ is the trajectory of the mass m, see Figure 3. Let B be the
vertex of τ and cτ the circle with center F and radius |FB|. For any point P on τ ,
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the velocity ~v is proportional to q = |BK|, namely v =
√

2g
h
q, where K is obtained

as the intersection of d with the line LB and L is the intersection of PF with cτ
which is farthest from P .

For varying directions of ~v0 but fixed magnitude v0 the following assertions hold
(see Figure 4 for illustration).
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Figure 3. Parabolic trajectories in a homogeneous force field (in-
dicated by the aceleration ~g).
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Figure 4. The envelope ε of all possible trajectories where the
direction of ~v0 varies but the magnitude v0 remains constant.

(i) The focus F of the trajectory τ lies on a circle with center O and radius h

and d is the directrix of τ .
(ii) The envelope ε of the various parabolic trajectories is a parabola with focus

P and vertex B.
(iii) The maximal distance possible to reach in direction α (measured from the

vertical) is the point where the trajectory meets the envelope ε and it is
attained when the initial velocity ~v0 is the angular bisector of α.

Property (iii) is well known in the special acse, where α = 90◦ as the rule that
–in vacuum and on flat ground– the maximum range of a projectile is attained by
launching it with an elevation of 45◦.
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The rest of the article is organized as follows. We first prove, in Section 2, some
technical results on conic sections. In Section 3 we show that for the central force
field, when the velocity is proportional to |O′Q| and perpendicular to O′Q, the
energy and the angular momentum are preserved. In Section 4 we show how this
implies that the described curve is indeed the trajectory, prove Kepler’s laws and
describe the hodograph. In Section 5 we treat the projectile motion.

2. Some geometric properties of conic sections

We prove three rather technical results about conic sections, one about ellipses, one
about hyperbolas and a third one about parabolas.

Lemma 2.1. Let O be the center of a circle c with radius R and let B be any point
in the interior of c different from O. Let τ be the ellipse with the foci O and B,
and major axis equal to R. Let P be any point on τ and let Q be the intersection
of c with the ray OP (starting in O). We define f = |OB|, the focal distance and
further, r = |OP | and q = |BQ|. Then the following equalities hold:

q2 =
(R2 − f2)(R− r)

r
(3)

rq sin θ =
R2 − f2

2
,(4)

where θ is the angle formed by the line OQ and the tangent to e at P .
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Figure 5. Illustration for Lemma 2.1.

Proof. Since the major axis of the ellipse τ equals R we have |OP | + |PB| = R

and therefore |PB| = |PQ| = R − r. By the reflection property of the ellipse the
tangent t to τ at P is the bisector of the segment BQ and therefore

(5) sin θ =
q

2(R− r)
.
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The law of cosine in the triangle ∆OQB yields

(6) f2 = R2 + q2 − 2Rq cosϕ,

where ϕ = OQB. We observe that sin θ = cosϕ and substitute (5) into (6) to
get:

(7) f2 −R2 = q2 − Rq2

R− r
=

−rq2

R− r
,

from which (3) follows at once.

To see (4) we multiply (5) by rq and substitute q2 using (3):

rq sin θ =
r

2(R− r)
q2 =

r(R2 − f2)(R − r)

2(R− r)r
=

R2 − f2

2

This concludes the proof of Lemma 2.1 �

Lemma 2.2. Let O be the center of a circle c with radius R and let B be any point
in the exterior of c. Let τ be the hyperbola with focii O and B, and major axis
equal to R. Let P be any point on τ and Q be the intersection of c with the ray PO

(starting at P ). We define f to be the focal distance |OB| and further r = |OP |
and q = |BQ|. Then the following equalities hold:

q2 =
(f2 −R2)(R+ r)

r
(8)

rq sin θ =
f2 −R2

2
,(9)

where θ is the angle formed by the line OQ and the tangent to τ at P .
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Figure 6. Illustration for Lemma 2.2.



A GEOMETRIC APPROACH TO PLANETARY MOTION AND KEPLER LAWS 7

Proof. Since the major axis of τ is R, we have |PB| − |PO| = R. Therefore
|PB| = R + r = |PO| + |OQ| = |PQ|. The reflection property of the hyperbola
implies that the tangent at P to τ is the angular bisector of the triangle ∆PBQ.
The rest of the proof follows now in complete analogy to the proof of Lemma 2.1. �

Lemma 2.3. Let c be a cicrle with center O and radius R and let B be a point on
c. Then let τ be the parabola with focus O and vertex B. Let P be any point of τ
and let Q be the intersection of c with the line PO which is farthest from P . Let
r = |OP | and q = |QB|. Then

q2 =
4R3

r
(10)

rq sin θ =
R2

2
,(11)

|BK|2 = Rr(12)

where θ is the angle formed by the line OP and the tangent to p at P .
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Figure 7. Illustration for Lemma 2.3.

Proof. The directrix is the perpendicular to the symmetry axis OB at distance R

from the vertex B. The point P has the same distance r from the focus O than
from the directrix d, thus |PO| = |PO′|. By the reflection property of the parabola,
parallel light to the symmetry axis is reflected to the focus. Therefore the tangent
t is the angular bisector at P of the triangle ∆OPO′. Denote by H the midpoint of
OC and by L (resp. by L′) the foot of the height of the rectangular triangle ∆PHO

(resp. ∆PHO′).

Since PO′ is parallel to OB, we have OPO′ = QOB. By similarity we have
q
2R = |OH|

r
and therefore

q2 = 4R2 |OH |2
r2

(∗)
= 4R2 rR

r2
=

4R3

r
,
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where equation (∗) follows from the fact that the square of a leg of a right triangle
equals the product of the hypothenuse with it’s adjacent part of the hypothenuse
cut off by the height, so: |OH |2 = rR.

Now r sin(θ) = |OH | and by similarity we have |OH|
R

= 2R
q
. Hence

rq sin(θ) = |OH |q =
|OH |
R

Rq =
2R

q
Rq = 2R2,

which shows (11) whereas (12) follows from the fact that |BK|2 = |HO′|2 =
|OH |2 = Rr. �

3. Conservation of energy and angular momentum

We study the situation, where a mass m is attracted in a central force field which
is proportional to the inverse of the square of the distance. We denote by ~v the
velocity of this mass and by v its magnitude. Hence the kinetic energy of the mass
m equals 1

2mv2. To simplify our treatment, we assume the mass m to be really

small compared to M , so the potential energy is equal to −GMm
r

, where r is the
distance between the two masses and G is the universal gravitational constant. The
total energy of the particle m is therefore

E =
mv2

2
− GMm

r
.

The orbit of the mass m depends crucially on the sign of E: if E is negative then
it is an ellipse; if E = 0, then it is a parabola; and if E > 0 then, it is a hyperbola.
We study first the most interesting case where the energy is negative.

Proposition 3.1. With the notations of Section 2, we have that if the mass m

moves along a curve τ with a velocity ~v which is always perpendicular to
−−→
QB such

that its magnitude v is proportional to q = |QB|, namely v = λq with

(13) λ =



















√

2GM
R(R2−f2) , if E < 0,

√

2GM
R(f2−R2) , if E > 0,

√

GM
2R3 , if E = 0,

then the energy and the angular momentum are preserved.

Proof. We first consider the case where the energy is negative. We then have

1

2
mv2 =

GMm

R(R2 − f2)
q2 = GMm

R− r

Rr
= GMm

(

1

r
− 1

R

)

,

where the first equation follows from (13) and the second by Lemma 2.1. Hence

E =
1

2
mv2 − GMm

r
= −GMm

R
,

that is, the energy E is constant. The angular momentum is clearly perpendicular
to the plane of the ellipse e and its magnitude L is such that L = mrv sin(θ). Since
v is proportional to q and qr sin(θ) is constant we get that L is constant.

The proof for the other two cases are analogous. �
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4. Conclusions

4.1. Newton’s second law. The next result shows that the preservation of energy
and angular momentum imply that Newton’s second law is also satisfied.

Theorem 4.1. With the hypothesis of Proposition 3.1, we have that the movement
of m along τ satisfies Newton’s second law:

(14) ~F = m~a,

where the force ~F is given by ~F = −GMm
r3

~r and ~a is the aceleration ~a = d2

dt2
~r.

Proof. We may assume that the velocity ~v and postion vector ~r are parametrized
by time t such that d~r

dt = ~v (see Appendix, Section 6 for a brief explanation of this).

Since the angular momentum ~L is always perpendicular to the plane of the ellipse

e and by Proposition 3.1, it is also constant in magnitude, we have d~L
dt = ~0. Since

~L = ~r × (m~v) we get

~0 =
d~L

dt
= m

d~r

dt
× ~v + ~r × d~v

dt
= ~r × ~a,

where the last equality follows from the fact that d~r
dt = ~v (by Lemma 6.1), ~v×~v = 0

and d~v
dt = ~a. This shows that at each position, the aceleration ~a is parallel to ~r.

Since the energy is also constant we have that dE
dt = 0 and hence

0 =
d

dt

(

m~v · ~v
2

− GMm

(~r · ~r) 1

2

)

= m~v · d~v
dt

+
GMm

(~r · ~r) 3

2

~r · d~r
dt

= m~v · ~a+ GMm

r3
~r · ~v

Therefore

0 = ~v ·
(

m~a+
GMm

r3
~r

)

= ~v · (m~a− ~F )

Since v is proportional to q, a segment which never vanishes, we have v 6= 0 and

therefore (14) holds unless ~v is perpendicular to m~a− ~F . Note that ~a and ~r (thus

also ~F ) are parallel. Consequently, if the trajectory is not circular, (14) holds in all
but a finite number of points along the curve and thus, by continuity, on all points.

It remains to consider the case, where the trajectory is circular. In this case the
focal distance vainshes, that is f = 0, further q = R and the distance r to the origin

O is constant r = R
2 . By Propostion 3.1 v =

√

2GM
R3 q and therefore

v2 =
2GM

R3
q2

(3)
=

2GM(R− r)

Rr
=

2GM

R
=

GM

r

Since the acceleration a in uniform circular motion satisfies a = v2

r
we get

ma = m
v2

r
=

GMm

r2
= F

and hence the result. �

Therefore, according to the sign of the energy E, the ellipse e, hyperbola h and
parabola p are the trajectories of the mass m moving in the central force field which
is proportional to the inverse of the square distance.
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4.2. Proof of Remark 1.2. Indeed, since the trajectory is precisely the conic
section described geometrically, Remark 1.2 follows at once from Proposition 3.1.

4.3. Kepler’s laws. We assume the notations of the previous sections.

Proposition 4.2. Suppose that a mass m is attracted by a central force, located at
O, which is proportional to the inverse of the square distance. Then the following
assertions hold.

(a) The trajectory of the orbit is (part of) a conic section: either an ellipse,
a parabola or one branch of a hyperbola. In each case O is a focus of the
trajectory.

(b) The position vector ~r sweeps out equal areas during equal intervals of time.
(c) The square of the orbital period T of an elliptic trajectory is proportional

to the cube of the major axis R, more precisely,

T 2 =
π2

2GM
R3.

Proof. Part (a) follows directly from the fact that the curves constructed in Theo-
rem 1.1 –which are conic sections– are the trajectories (and all the possible trajec-
tories). However, parabola and hyperbola correspond to orbits of an object passing
only once through each point. Hence the orbits of revolving objects must be elliptic.

Part (b) is an immediate consequence of the preservation of the angular momentum
~L. The area swept by ~r in the interval [t0, t1] is given by

(15) At1
t0

=

∫ t1

t0

1

2
r(t)v(t) sin(θ)dt =

∫ t1

t0

L

2m
dt =

L

2m
(t1 − t0).

This shows that the area is proportional to the elapsing time.

For part (c), we use first (15) to calculate the oribtal period T :

T =
2mA

L
,

where A is the area of the ellipse e. We have

(16) A =
π

4
R
√

R2 − f2,

since e has minor axis
√

R2 − f2. The magnitude L of the angular momentum can
be calculated following the ideas of the proof of Proposition 3.1:

(17) L = rmv sin(θ)
(13)
= m

√

2GM

R(R2 − f2)
qr sin(θ)

(4)
= m

√

2GM(R2 − f2)

2R
.

Putting all together we obtain

(18) T =
2mA

L

(16)
=

πmR
√

R2 − f2

2L

(17)
=

πR
√
R√

2GM
,

and hence (c) follows by squaring (18). �
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4.4. The Hodograph. The hodograph is by definition the curve formed by the
endpoints of the velocity vectors ~v, when translated to a fixed starting point.

Proposition 4.3. The hodograph is always part of a cicle. If τ denotes the trajec-
tory and H the hodograph then we have the following assertions.

(a) If τ is an ellipse, then H is a full circle.
(b) If τ is a parabola, then H is an open arc obtained from a circle by removing

a single point.
(c) If τ is a hyperbola, then H is an open arc obtained from a circle by removing

a closed arc segment.

Proof. Since ~v is in each case proportional to ~q =
−−→
BQ and always perpendicular,

we may as well take ~q to investigate the form of the hodograph H . Let H ′ be
the curve formed by the endpoints of all vectors ~q. In each case ~q starts in B

and ends in the cicle c. Hence H ′ is always a subset of c. If τ is an ellipse, B
is an interior point of c and H ′ = c follows. If τ is a parabola, then B lies on
c and H ′ = c \ {B}, that is, the whole circle c except for the point B. If τ is a
hyperbola then H ′ is an open arc delimited by the tangent points of B to c, since for

r → ∞ we obtain q2 = (f2−R2)(R+r)
r

r→∞−−−→ f2 − R2 and thus the triangle ∆OBQ

approaches a rightangled one (see Figure 8 for illustration). Consequently the line
BQ approaches the tangent at c through B. �

P

B
O

Q

f

qR

c

h

Figure 8. Limit case for P infinitely far away.

5. Projectile motion

We finally give the proof of Theorem 1.3. By Lemma 2.3 we know that the tangent
at point P is perpendicular to BL. Since v is assumed to be proportional to |BL|
the aceleration ~a = d~v

dt is vertical, due to the fact that the variation of
−−→
BK is
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horizontal. Note that again we assumed ~v and ~r to be parametrized by time in
such a way that d~r

dt = ~v (see Appendix, Section 6).

The energy is E = mv2

2 −mgy, where y is the distance from P to d. Using v =
√

2g
h

and (12) of Lemma 2.3, where R = h, we have

E =
m 2g

h
q2

2
−mgy = mg

(

hr

h
− y

)

= 0,

where the last equation follows from y = r, since P has the same distance from F

than from d. Thus the energy is constant.

We decompose the velocity into a horizontal and a vertical part ~v = ~vh + ~vv. Thus

E =
mv2h
2

+
mv2v
2

−mgy

Using that the aceleration is vertical we have dvh
dt = 0 and therefore

0 =
dE

dt
= mvh

dvh
dt

+mvv
dvv
dt

−mg
dy

dt
= m (vva− gvv)

showing that a = g. Thus Newton’s second law is satisfied and the parabola is
indeed the trajectory. Now part (i) of Theorem 1.3 follows immediatley from the
construction.

Let ε be the parabola with focus O and vertex O′, see Figure 9 for illustration. Let
Q be any point of τ and Q′ (resp. Q′′) the intersection of the vertical line through
Q with d (resp. with dε).

Then we have

|OQ| ≤ |QF |+ |FO| = |QQ′|+ h = |QQ′′|
with equality if and only if F lies on OQ. This shows that ε touches τ in a single
point, namely the intersection T of OF with τ . Hence ε is the envelope of all
possible trajectories for varying directions of ~v0 and constant magnitude v0, which
proves part (ii) of Theorem 1.3. Furthermore, the farthest point from O which may
be reached in direction α (measured from the vertical) is obtained by the trajectory
for which the initial velocity ~v0 is the angular bisector of α, since ~v0 is the angular
bisector of O′OF . Hence property (iii) is also shown and we have completed the
proof of Theorem 1.3.

6. Appendix

In each of the cases, we have given the velocity at each position along a path, that
is, we have the velocity given as a function ~v(~ρ) of the position vector ~ρ. If we
parametrize the path by the arc length s to the initial position, then we get the
function ~ρ = ~ρ(s).

If a particle moves along the path in such a way that at each position ~ρ(s) the
velocity is ~v(~ρ(s)), then we obtain that the time as a function of the arc length is
given by

(19) t(s) =

∫ s

0

dσ

v(~ρ(σ))
.
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α
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α

2

d
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O
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F
T

Q

Q′

Q′′

τ

ε

h

h

h

Figure 9. The envelope ε of all possible trajectories where the
direction of ~v0 varies but the magnitude v0 remains constant.

Indeed, this is easily seen using a limit process: we subdivide the arc between the
initial position σ = 0 and the end position σ = s into n parts s0 = 0, s1, . . . , sn = s.
Let ti be the time at which the particle passes position ~ρ(si). Then we have that
the arc difference si+1 − si is approximately equal to

si+1 − si ≈ (ti+1 − ti) · v(~ρ(si)).
Hence

t(s) = tn =

n
∑

i=1

ti+1 − ti ≈
n
∑

i=0

si+1 − si

v(~ρ(si))

yielding equaltity (19) for n → ∞.

Since the velocity is nowhere declared zero, we get that the time is monotonously
increasing with the arc length. Hence there exists the inverse function s(t) of the
arc length as a function of the time. Now we set

~r(t) = ~ρ(s(t)) and ~v(t) = ~v(s(t)).

Lemma 6.1. With the above notation and definitions, we have d~r(t)
dt = ~v(t).

Proof. We have the following equalities:

d~r(t)

dt
=

d~r(s(t))

ds

ds

dt
=

d~r(s)

ds
v(t) = ~v(t),

where the last equality follows from the fact that d~r(s)
ds is a unit vector tangent to

the path and ~v has length v and is also tangent to the path. �
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