Unidades interactivas convenio CONACyT - 2013
Audiocuento que trata sobre el abuso de un mono hacia una cangrejo y las consecuencias de sus actos. Cuento tradicional japonés.
En esta unidad se desarrollará el TG desde un punto de vista geométrico y, mediante ejemplos, se mostrará su aplicación a distintos problemas, en particular, al funcionamiento de un planímetro, el cual es un instrumento mecánico que permite calcular el área delimitada por una curva plana cerrada.
Comprender que son las constantes, las variables y cual es su importancia en la progrmación de computadoras, de igual forma entender que son los tipos de datos, cómo utilizarlos y cuales son las más comunes en los diferentes lenguajes de programación
Se estudian los teoremas de Ceva y Menelao y algunas de sus aplicaciones, por ejemplo: la existencia del ortocentro, incentro y gravicentro de un triangulo. Los teoremas de Ceva y Menelao están separados 15 siglos en la historia, sin embargo, se estudian juntos ya que uno es el dual del otro. El teorema de Ceva da condiciones para que tres puntos que están en los lados de un triángulo sean colineales y el de Menelao dice cuándo tres rectas que pasan por los vértices de un triángulo son concurrentes.
El objetivo de esta unidad es presentar al alumno los tres conceptos fundamentales del cálculo: el límite, la derivada y la integral, y el teorema fundamental del cálculo. El alumno podrá experimentar con los interactivos observando que el cálculo se basa en problemas de resolver límites, ya sea el límite de la suma de polígonos para el caso de la integral, o el límite de la pendiente de dos puntos arbitrariamente cercanos en una curva para la derivada. Se explica que el teorema fundamental del cálculo permite relacionar a la derivada e integral como funciones inversas.
En muchas áreas del conocimiento se maneja información que es almacenada con diferentes tipos de datos, los cuales deben ser procesados para obtener otra información. Las matrices, permiten el almacenamiento de grandes cantidades de datos que, con el uso de los computadores, han permitido realizar cálculos o procesamientos que manualmente demandaban mucho tiempo.
Los objetivos de esta unidad son:
* Reconocer los elementos y el tamaño de una matriz. * Realizar operaciones con matrices.
En esta unidad didáctica el estudiante conocerá las teorías que se desarrollaron con la intención de darle solución al problema de la radiación del cuerpo negro. Además conocerá el proceso para encontrar el valor de la constante de Planck por medio de el efecto fotoeléctrico.
El objetivo de esta serie de interactivos es estudiar ejemplos planteados que cuentan con condiciones que debe cumplir un punto del plano para poder ser considerado un elemento del lugar geométrico. Una vez establecida las condiciones, procederemos a encontrar la ecuación que debe satisfacerse para identificar la curva. En este caso, se hace una construccion del lugar geométrico que describe un punto M cuando se mueve un punto A en un círculo. Se prueba que dicho lugar geométrico también es un círculo.
Se determina la trayectoria mínima sobre una esfera entre dos de sus puntos, es decir se determina la geod&iecute;sica entre esos dos puntos. Se define qué es un segmento esférico y un triángulo esférico. Se comprueba que la suma de los ángulos de un triángulo esférico es superior a 180º Y se muestra que la geometría esférica no es una geometría ecuclídea, que hay otras geometrías.
La ley de la Oferta y la Demanda es un modelo económico, matemático, del comportamiento del mercado en el que se establece una relación entre el número de unidades producidas de un producto y el precio abonado por ellas. Estas cantidades van ajustándose progresivamente hasta alcanzar un precio de equilibrio en el que todo lo producido se vende y a la vez la demanda queda completamente satisfecha.