
Conic curves revisited via harmonicity
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The definition of conic curves as the locus of points in the projective plane that
see a quadrangle as a harmonic set, is introduced. Its relation with other classic
projective definitions is discussed, and the classic theorem that establishes the
hyperbolic transformations as a group of matrices, Hyp(2) ∼= PSL(2,R), is
proved within this synthetic context. Doubly-ruled surfaces are used for the
proofs.

1 Introduction

Motivated by the perspective technics developed by the artists in the renais-
sance, Girard Desargues (1591 - 1661) expanded considerably our geometric
realm by including ideal points at infinity. His visionary work was revived
in the first half of the XIX century when Projective Geometry was firmly es-
tablished as a field on its own. Indeed, in 1872 Felix Klein opens his famous
Erlangen Program, [7], with the statement “Among the advances of the last
fifty years in the field of geometry, the development of Projective Geometry oc-
cupies the first place”. One of the mathematicians whose work deserved such
praise is Karl Georg Christian von Staudt (1798 – 1867). In his treatise on
the subject [10], the notion of harmonicity, by which we mean the concepts
of harmonic sets and pencils, was proved to be independent of distances and
angles, and in this same spirit, conic curves were seen to arise naturally within
projective geometry using and introducing the concept of polarity.

Attempting to make these facts accesible to high school teachers and their ef-
forts, and inspired by [8] where John Stillwell makes this dream look feasible,
worthwhile and culturally urgent, we developed a dynamic geometry system,
ProGeo3D [2], specialized in projective geometry. In particular, we incorpo-
rated harmonicity as a construction tool. And soon, playing with it we started
to find interesting new constructions, results and proofs of classic theorems.
This paper collects some of them that, as far as we know, are not in the liter-
ature. We start reviewing von Staudt’s definition of harmonicity emphasizing
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on the duality it naturally carries. It leads to a simple definition of what we
call harmonic curves to differentiate them from the classic treatment of conic
sections, although they are the same. This new approach to them makes it
easy to note that they are what we see when we look at a circle which should
be the way kids are introduced to them (and teachers should be confident
about). In the following section, we relate them to von Staudt’s definition
that uses polarities, it is now stated as the “Polarity Theorem”, in a way that
leads to hyperbolic geometry and the classic fact that its group is the same as
the group of projectivities of the line, providing a new and simple synthetic
proof of it. The proof of the Polarity Theorem we give uses the classic idea
in Projective Geometry of going out to 3D, finding room to work out things
there, and then coming back. In this case, the first to use our explicit technic
was Germinal Pierre Dandelin (1794 – 1847) to prove Pascal’s Hexagon The-
orem. We name the main configuration used after him. It is deeply related to
doubly-ruled surfaces, towards which we rely on the approach given by Hilbert
and Cohn-Vossen in [5] based purely on incidence geometry. This leads to a
new formulation of one of the classic axioms of Projective Geometry which we
call the Equipal Axiom. In the final section we discuss about it.

2 Harmonic sets, pencils and reflections

One of the seminal contributions of Karl von Staudt was to prove that har-
monicity (the notion of harmonic conjugates which had been used since antiq-
uity in terms of distances) only depends on incidence using quadrangles.

Let us define a quadrangle, Q, as four points in the projective plane in general
position (i.e., no three of them are collinear), called its vertices, together with
4 lines, called its sides, such that their incidence relation is a 4-cycle (each
object of one type is incident with two of the other); that is, Q is defined
by its vertices, 4 points in general position, together with a dihedral (i.e., a
cyclic but non-oriented) order on them which yields the 4 sides. The term
“quadrangle” is adequate because at any vertex, its two lines (an “angle”)
distinguish two adjacent vertices and thus, it also determines the opposite
vertex (as the remaining one); note that the partition into opposite pairs
determines the quadrangle. The center of the quadrangle Q is the intersection
of its two diagonal lines (joining opposite vertices); and its horizon is the line
joining the intersection of opposite sides, which are called its two diagonal
points.
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The notion of a quadrangle is autodual, but in a quadrilateral the stress is
given on the 4 sides, so that its dual-center is the horizon of the corresponding
quadrangle and its center is the dual-horizon. However, we will keep the
“horizon” and “center” terminology: understood always as a line and a point,
respectively. These terms are natural because if a square tile is drawn on
a canvas, the center of the tile and the horizon of the tiled plane to which
it belongs must be drawn, respectively, at the center and the horizon of the
corresponding quadrangle.

Four points in general position are the vertices of three quadrangles. Their
corresponding centers and horizons form its diagonal triangle.

Figure 1: a) A harmonic set. b) A harmonic pencil.

Four collinear points A,C,B,D (as in Figure 1.a) are said to be a harmonic
set1, if there exists a quadrangle Q such that the diagonal points of Q are
A and B (hence the horizon of Q is their support line) and the other pair,
C and D, are incident with the diagonal lines of Q. Dually, four concurrent
lines are called a harmonic pencil2 if there exists a quadrangle such that one
pair of lines are the diagonal lines of the quadrangle (hence, its center is the
concurrency point of the pencil, also called its center) and the other two lines
are incident to the diagonal points of the quadrangle, see Figure 1.b).

As stated, the pairs of elements in the definitions play a different role but, as
we will see, they are interchangeable, so that both notions include an explicit
dihedral order of the four elements involved, which coincides with their geo-
metric placement (points within a projective line or lines about a point).

We now outline a proof that these definitions are sound. Given a collinear triple
A,C,B with C distinguished, two auxiliary points out of the support line and

1The terms “harmonic quadruple” or “harmonic range” are also used, but we stick to
“harmonic set” as in the classic texts [9] and [3].

2The term “harmonic set of lines” is also used, e.g. [9, 3]; but we will use “pencil” for
simplicity and to distinguish them immediately from harmonic sets (of points).
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collinear with C determine a unique quadrilateral Q as in Figure 1.a), and
therefore give the point D as the intersection of the other diagonal line with
the horizon; this construction, called the harmonic fourth, has as outcome the
point D, called the harmonic conjugate of C with respect to A and B. Since
for the triple A,D,B, one can choose the other opposite pair of vertices of Q
as auxiliary points and then obtain C as outcome, we can further say that the
(unordered) pair of points C,D are harmonic conjugates with respect to A,B,
[3, 9]. Let us refer as “Harmonic Theorem” to the fact that the outcome of the
harmonic fourth construction does not depend on the choice of auxiliary points.
It follows from Desargues’ Theorem or by a simple “lifting to 3D” argument
that we omit for brevity. Finally, to see that the definition of harmonic set is
symmetric with regard to the role played by the two pairs of points, extend
the quadrangle Q to a 2 by 2 tiling drawn in perspective, as in Figure 2 (the
know-how comes from the renaissance artists and the coincidences follow from
the Harmonic Theorem). Then, the quadrilateral of diagonals not incident
with O proves that A,B are harmonic conjugates with respect to C,D.

Figure 2: Symmetry of harmonicty.

Since the point O in Figure 2 may be chosen to be any point not on the
support line of the harmonic set, we obtain that any such point sees them as
harmonic, that is, the lines to them with their dihedral order is a harmonic
pencil. Dually, there is also a harmonic fourth construction for lines and any
line not through the center of a harmonic pencil cuts it in a harmonic set.
Thus, harmonic sets and pencils are preserved by projections.

The harmonic fourth construction makes sense in the limiting new cases C = A
and C = B, in which the outside quadrangle collapses to a line, but not the
construction: it holds in the sense of not becoming ambiguous, and yields
D = A and D = B, respectively. So that given two (distinct) points A and B
in a line ` we get a well defined map

ρA,B : `→ `
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called the harmonic reflection of ` with respect to A and B: it fixes these
two points and is the harmonic conjugate elsewhere. It is an involution which
interchanges the two segments in which the points A and B break their projec-
tive line. And in particular, it interchanges its ideal point at infinity with the
(euclidean) midpoint of A and B, making the harmonic fourth construction a
very useful tool for perspective drawing.

The natural generalization to the projective plane (space) is the harmonic
reflection3 with respect to a point C, called the center, and a non-incident
line (resp., plane) m, called the mirror, which we denote ρC,m. It is defined
on every line ` through C as the harmonic reflection with respect to C and
the intersection of ` with m. If we denote by ∨, “join”, and ∧, “meet”, the
basic operations of linear span and intersection, respectivelly, we may write
for X 6= C:

X · ρC,m = X · ρC,(X∨C)∧m ;

where we write the action of maps on the right. This notion amalgamates two
classic euclidean examples: the central inversions, when the mirror is the line
(plane) at infinity, and the reflections when the center is the ideal point in the
direction perpendicular to the mirror.

Harmonic reflections are collineations (i.e., send lines to lines) and moreover,
they act in the dual plane as harmonic reflections in the sense that if ` is a
line different from the mirror m, then `,m, ` · ρC,m, (` ∧m) ∨ C is a harmonic
pencil centered at ` ∧m.

Lemma 1 (Klein’s Triangle). Given a triangle ABC with respective opposite
sides abc, then { idP2 , ρA,a, ρB,b, ρC,c } is the Klein four-group.

Proof. . Since the three non-trivial elements are involutions, we must show
that the composition of any two of them gives the third, which is the definition
of the Klein four-group. Consider a point X not in the triangle. We claim that
the quadruple {X,X ·ρA,a, X ·ρB,b, X ·ρC,c } has ABC as its diagonal triangle.
In Figure 3, the three dashed lines through X have harmonic sets that define
the corresponding three points other than X. The dotted lines from a vertex
(say A) to one of them (say, X ·ρC,c) pass through another one (X ·ρB,b) because
the two corresponding harmonic sets (in C ∨X and B ∨X) are projected to
each other from the vertex (A) and projections preserve harmonicity.

3In the plane, Coxeter calls it harmonic homology in [3].
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Figure 3: Klein’s Triangle Lemma.

It is easy to see that these dotted lines through the vertices cut the opposite
side in its corresponding harmonic conjugate, and that for points X in the
triangle the maps behave as they should, to complete the proof.

Thus, the generic orbits of the Klein four-group associated to a triangle are
the quadruples that have it as diagonal triangle, and any of the four triangular
regions in which the three lines cut the projective plane are the fundamental
regions of the group action which has the vertices as fixed points.

Let us call the group of transformations of Pn (n = 1, 2, 3) generated by
harmonic reflections its harmonic group, and denote it Har(n). Of course, it
is the classic group of projectivities, but this requires proof.

3 Harmonic curves and bundles

Given a quadrangle Q, its harmonic curve, CQ, is the locus of points that are
the center of a harmonic pencil transversal to Q, that is, each line of the pencil
is incident to a vertex of Q and this correspondence preserves their dihedral
orders. Dually, the harmonic bundle of a quadrilateral consists of the lines
that support a harmonic set transversal to the sides of the quadrilateral with
corresponding dihedral orders.

Consider a quadrangle Q with vertices A,C,B,D. First observe that the ver-
tices are points of its harmonic curve CQ. Indeed, for each vertex, the harmonic
conjugate of its diagonal with respect to its sides completes a harmonic pencil
centered at it which is transversal to Q, see Figure 4.a. These new lines are the
tangent lines to CQ at the vertices and will be denoted by the corresponding
lower case letter. The harmonic bundle of the quadrilateral a, c, b, d is called
the tangent bundle of CQ and will be denoted C∗Q.
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Figure 4: a) A quadrangle Q with gray dashed sides and the tangent lines to its
harmonic curve, CQ, at the vertices. b) A generic point Z ∈ CQ.

Now consider a point Z ∈ CQ different from the vertices, we call it generic, see
Figure 4.b. By definition, the four lines from Z to the vertices are a harmonic
pencil centered at Z. Let q = A ∨ B, X = q ∧ (C ∨ Z) and Y = q ∧ (D ∨ Z).
Then A,X,B, Y is a harmonic set. Observe that we can recover Z from X ∈ q
by first defining

Y = X · ρA,B and then Z = (C ∨X) ∧ (D ∨ Y ) . (1)

But this makes sense for X varying over all of q and gives the four vertices, so
that CQ is parametrized by X ∈ q via this construction which we will refer to
as the HC-construction.

Lemma 2. Points in the harmonic curve CQ are paired (i.e., in bijective
correspondence) by incidence with lines in its tangent bundle C∗Q.

Proof. . Let us continue with the notation above, so that a, c, b, d, is the
quadrilateral whose harmonic bundle is C∗Q. As before, these four generating
lines belong to the bundle because the vertex to which they are tangent (called
their contact point) can be obtained as the harmonic fourth of their intersection
to the other three lines (see Figure 4.a). Going further on the HC -construction
(1), and dualizing it (see Figure 5): let Q = a ∧ b, x = Q ∨ Y and y = Q ∨X,
so that a, x, b, y is generically a harmonic pencil centered at Q. Then, z =
(c ∧ x) ∨ (d ∧ y) is a line of the bundle C∗Q, and any such line is uniquely
expressed in this way.

To prove that Z ∈ z for X different from A and B, consider the triangle QXY
with respective opposite sides qxy. By the definitions, we have D = C · ρQ,q
(d = c ·ρQ,q), and by Klein’s Triangle Lemma, ρX,x = ρQ,q ·ρY,y, then C ·ρX,x =
D · ρY,y (c · ρX,x = d · ρY,y). But C · ρX,x ∈ C ∨ X and D · ρY,y ∈ D ∨ Y , so
that C · ρX,x = (C ∨X) ∧ (D ∨ Y ) = Z (dually, c · ρX,x = z). Hence, the fact
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that C ∈ c, implies that Z ∈ z as we wished. Z is called the contact point of
z ∈ C∗Q which is the tangent line to CQ at Z.

Figure 5: Incidence of points in a harmonic curve and lines in its tangent bundle.

As a corollary, we can express the harmonic curve CQ as a family of harmonic
reflections applied to a single point

CQ = {C · ρX,x |X ∈ (A ∨B) \ {A,B} } ∪ {A,B} , (2)

where x = (X ·ρA,B)∨ (a∧ b), which only depends on three points A,C,B and
the two tangent lines a, b incident to A,B, respectively; we will call this, the
A-construction.

Clearly, harmonic curves are sent to harmonic curves under projections be-
cause projections preserve harmonicity. So that the fact that the classic conic
sections are harmonic curves follows from the fact that a circle is a harmonic
curve. Indeed, consider an inscribed square as generating quadrangle and use
the inscribed angle theorem to see that each point in the circle becomes the
center of a transversal pencil to the quadrangle with lines at angles π

4
.

4 Polarities and hyperbolic geometry

A polarity in the plane (in space) is a bijective correspondence between points
and lines (planes) that preserves incidence; the terms polar of a point, pole of
a line (plane) or a polar pair are used4.

4An extra hypothesis is required in [3]. Namely, that for some line, the map to the line
pencil of its pole be a projectivity. But we do not need to stress this issue.
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Theorem 1 (Polarity). A harmonic curve C induces a polarity (expressed by
upper and lower case of the same letter) satisfying:

i) P ∈ C ⇔ P ∈ p .
ii) If P 6∈ C then the harmonic reflection ρP,p, with P as center and its

non-incident polar line p as mirror, leaves C invariant.

We have already seen a part of item (i) as Lemma 2 because tangent lines to
a harmonic curve are defined as their polar lines. The rest of the proof will be
given in the next section. For the moment, let us make two remarks about the
theorem itself and then, assuming it is true, see some of its deep consequences.

First, two mathematicians directly associated to this theorem are Jean-Victor
Poncelet and Karl G. C. von Staudt. Poncelet proved the relation of poles
and polars of conic sections with harmonicity (in its metric version), and soon
after, von Staudt developed polarities as a general concept and used it as
an alternative way to define conic curves within projective geometry with no
metric or algebraic considerations, [10]. This definition via polarities is the one
Coxeter uses in his influential book [3], and calls it “extraordinarily natural
and symmetrical” because it has duality built into it. In general, there are two
types of polarities: euclidian in which no point is incident with its polar line,
and hyperbolic when there exist pole and polar incident pairs. The terms used
are related to the groups generated by harmonic reflections of non-incident
polar pairs. So that von Staudt’s definition of a conic curve is equivalent to
item (i) of the theorem for a hyperbolic polarity, while Poncelet’s results can
be rephrased as item (ii).

Second, as examples of polar pairs, we have named lines and points in Figure 5
according to the upper and lower case rule for poles and polars with respect
to the displayed harmonic curve CQ.

We now prove that von Staudt’s definition of conic curves with mild extra
hypothesis gives harmonic curves.

Lemma 3. Given a polarity in the plane, let C be the set of points that are
incident to their polar line, and suppose item (ii) of Theorem 1 holds. If every
line meets C in at most two points and C contains at least three points, then C
is a harmonic curve.

Proof. Let A,B,C ∈ C be three points. By the hypothesis on the lines, they
form a triangle. Let a, b be the respective polar lines of A,B, so that A ∈ a and
B ∈ b. Let Q = a ∧ b; it is the pole of q = A ∨ B because polarities preserve
incidence, which also implies that Q 6∈ q. Finally, let Q be the quadrangle
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A,C,B,D = C · ρQ,q. We claim that C = CQ to conclude the proof.

Given X ∈ q \ {A,B }, its polar, x, is a line through Q different from a and b.
Let Y = x∧ q. Then, since ρX,x leaves q and C invariant and q ∩ C = {A,B },
it transposes A and B, so that X,A, Y,B is a harmonic set. Since the polarity
satisfies (ii), C · ρX,x ∈ C, so that the A-construction (2) for CQ implies that
CQ ⊂ C. Finally, given Z ∈ C different from A,B,C, let X = (Z ∨C)∧ q, then
Z = C · ρX,x because the line Z ∨C has no point in C other than Z and C by
hypothesis. Therefore, CQ = C.
One very important consequence of the Polarity Theorem is the projective
model of the hyperbolic plane due to Beltrami and Klein as follows.

Let C be a harmonic curve; it will remain fixed for the rest of this section
and, using the Polarity Theorem, we assume that it comes with a polarity
as described therein. The curve C breaks the plane into two regions. The
interior points whose polar line does not intersect C: they form the hyperbolic
plane, denoted H2. And the exterior points whose polar line cuts C in two
points. Their intersection with H2 are the hyperbolic lines, which can also be
considered as projective lines. The remaining projective lines are the tangents
that touch C only at their pole or contact point.

Given a hyperbolic line q, with pole Q, let ηq = ρQ,q be the hyperbolic reflec-
tion along q which maps C to itself by item (ii) and thus it also maps H2 to
itself. All the hyperbolic reflections generate the group Hyp(2) of hyperbolic
transformations which, in the spirit of Klein’s Erlangen Program [7], acting
on H2 yields the hyperbolic plane geometry.

Two hyperbolic lines q and p are perpendicular if the hyperbolic reflection on
one of them leaves the other invariant, that is, if p = p · ηq. This happens iff
the pole of q is incident with p. We can always write q = A∨B with A,B ∈ C
and p = C ∨D with C,D ∈ C. Then p and q are perpendicular if and only if
the quadrangle A,C,B,D is a generating quadrangle of C, that is, it has C as
its harmonic curve.

Theorem 2. Hyp(2) ∼= Har(1).

Proof. First, we define the tangential map from C to a tangent line, Figure 6.a.
Let T be a point in C and let t be its tangent (or polar) line. For every X ∈ C
other than T , let X ′ = t ∧ x, where x is the tangent line to C at X. Taking
T = T ′, this gives a bijective map X ↔ X ′ between C and t, because x′ (the
polar of X ′ ∈ t) cuts C in T and X for X ′ 6= T .
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Figure 6: a) Tangential map. b) A generating quadrangle in C and its correspond-
ing harmonic set in p.

Considering t as P1, the theorem follows from the fact that generating quad-
rangles of C and harmonic sets of t correspond to each other, because then
harmonic reflections and hyperbolic reflections (the generators of the groups)
correspond under the tangential map.

Let A,C,B,D be a generating quadrangle of C, and let a, c, b, d be their re-
spective tangent lines. By Lemma 2, the harmonic bundle of this quadrilateral
is the tangent bundle of C and it contains t. Therefore, by the definition of har-
monic bundles, we have that A′, C ′, B′, D′ is a harmonic set, see Figure 6.b.

5 Doubly ruled surfaces

Our proof of the Polarity Theorem (1) is inspired by Dandelin’s proof of Pas-
cal’s Hexagonal Theorem. Given a conic curve, Dandelin constructs, in [4], a
hyperboloid of revolution that has it as a plane section; then, using that these
surfaces are doubly-ruled, he obtains a configuration of 6 lines in three dimen-
sional space associated to the six points of the hexagon in the conic, and argues
with the geometric-combinatorial properties of the configuration to conclude
the proof. We use the same general idea and get to the same configuration of
6 lines, but instead of hyperboloids of revolution we can now use general ruled
surfaces following Hilbert and Cohn-Vossen’s construction of ruled surfaces in
[5], which appeared in print almost a century after Dandelin’s proof, and made
clear that they can be constructed by simple incidence arguments.

Consider two lines a and b in three dimensional projective space. They touch
if and only if they are coplanar. If this is not the case, they can be called a
generating pair because for any point X not in them, there is a unique line
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through X transversal (i.e., with a common point) to a and b; namely,

(X ∨ a) ∧ (X ∨ b) .

Now consider three lines a, b, c in general position (i.e., each pair is generating).
The transversal ruling to a, b, c, denoted R(a, b, c), is the set of lines that are
transversal to them (i.e., that touch the three); any such set of lines will be
called a ruling and its elements are called its rules (see Figure 7.a). If we
denote R = R(a, b, c), the above observation implies that R is parametrized
by incidence with the points in any of the three generating lines (through any
point in them there passes a unique rule). It will be important to note that,
dually, R is also parametrized by planes containing one of the lines; if we
denote planes by greek letters (points and lines are, respectivelly, upper and
lower case latin) we have, for example, that

R(a, b, c) = { (b ∧ α) ∨ (c ∧ α) | a ⊂ α } . (3)

Every pair of rules in R is generating because if not, their three transversal
lines a, b, c would be coplanar. Thus, for any triplet a′, b′, c′ ∈ R we get a
transversal rulling R(a′, b′, c′) that contains the original three lines, a, b, c; this
ruling is an extension of a, b, c (see Figure 7.b). In real projective space it
is true that there is only one extension to a ruling of three lines in general
position. But there is no simple or elementary proof of this fact. Therefore,
we state it as an axiom that will later be proved to be equivalent to Pappus’s
Theorem and other classic statements that have been used as axioms.

Figure 7: a) The transversal ruling by blue lines to three red lines. b) The transver-
sal ruling to any three blue rules contains the three original red lines.

Equipal Axiom.5 Three lines in general position belong to a unique ruling.

5Equipal is a classic mexican style of furniture that uses double rulings for bases, [1].
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This axiom, could also be called “Double-ruling Axiom” because it immedi-
ately implies that rulings are matched or paired: any ruling has an opposite
ruling which is the transversal ruling to any three of its rules. The doubly-ruled
surface (we also refer to it simply as a ruled surface) obtained as the union of
the rules in a ruling is also the union of the rules in its opposite ruling.

Hence, every point on a ruled surface has a tangent plane: the one generated
by the unique rules through the point in the two rulings of the surface. If we
consider it as its polar plane, this association extends to a full scale polarity.

Theorem 3 (Polarity of ruled surfaces). The pairing of points in a ruled
surface S with their tangent planes extends to a polarity of projective space.
Furthermore, if P 6∈ S then P is not incident with its polar plane π and the
harmonic reflection ρP,π, with P as center and π as mirror, leaves S invariant.

Proof. The ruled surface S has two opposite rulings R and R′ such that

S =
⋃
x∈R

x =
⋃
y∈R′

y .

To define the polarity induced by S in its complement, fix three rules a, b, c in
the ruling R, and beware that we have inverted the notational use of primes:
their transversal ruling is now R′ = R(a, b, c).

Consider a point P 6∈ S; dually, we could start with a non-tangent plane.

Let α = a ∨ P . There is a well defined rule a′ ∈ R′ for which P ∈ a ∨ a′ = α
(namely, a′ = (b ∧ α) ∨ (c ∧ α), as in (3)). Let A = a ∧ a′ ∈ S. Observe that
A must be in the polar plane of P because polarities preserve incidence and
P is in the polar plane of A.

Analougously, we obtain b′, c′ ∈ R′, for which P ∈ b∨b′ = β and P ∈ c∨c′ = γ.
Let B = b ∧ b′ and C = c ∧ c′, so that the polar plane to P has to be

π = A ∨B ∨ C .

If we had started, dually, with a non tangent plane π we would have found P as
the intersection of the three tangent planes at A = a∧π, B = b∧π, C = c∧π;
and a′, b′, c′ would be the rules in R′ passing through A,B,C respectively. So
that the pairing of points and planes is now well defined.

We have distinguished what we will call a Dandelin configuration: six lines of
two types or colors, three of each, a, b, c and a′, b′, c′—unprimed and primed
in the text, red and blue in the pictures as in Figure 7.b— such that a pair of
them touch if and only if they have opposite types. This produces nine basic
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points and nine tangent planes by the “meet” (∧) or “join” (∨) of lines of
different colors; but it also comes with a derived configuration of other lines
and planes that naturally arise from them. The geometric richness of this
configuration, closely related to the combinatorics of 3 × 3 determinants, is
what Dandelin exploited in [4]; and we follow suit.

Now, we will prove that the harmonic reflection, ρP,π, with center P and mirror
π interchanges the lines a, b, c respectively with a′, b′, c′ in the opposite ruling.
By the triangular symmetry of the construction, it will sufffice to prove that:

• in the tangent plane to A, α = a ∨ a′, the lines a,A∨P, a′, α∧ π
are a harmonic pencil centered at A.

Because this happens if and only if ρP,π interchanges the lines a and a′.

The tangent plane α = a ∨ a′ contains five of the nine basic points of our
Dandelin configuration. Namely, the α-quadrangle:

a ∧ b′, b ∧ a′, a ∧ c′, c ∧ a′ ,

with its center A because its diagonals are a and a′. The remaining four
basic points outside of α, group naturally into two pairs whose generated lines
are incident with the two diagonal points of the α-quadrangle. This follows
because these diagonal points can be seen as the intersection of three tangent
planes. Namely, P = α ∧ β ∧ γ (see Figure 8.a) and Q = α∧(b∨c′)∧(c∨b′) =
α ∧ (B ∨ C) ∈ α ∧ π (see Figure 8.b).

Figure 8: a) The Dandelin configuration given by the point P 6∈ S and its polar
plane π = A ∨B ∨ C. b) The harmonic pencil a,A ∨ P, a′, A ∨Q = α ∧ π.

Thus, ρP,π interchanges the rules a and a′. Analogously, it interchanges b with
b′ and c with c′. Then, it gives a bijection between the transversal rulings of
a, b, c and a′, b′, c′, which are R′ and R respectively, because a line transversal
to a, b, c is sent by ρP,π to a line transversal to a′, b′, c′ and viceversa. Therefore,
ρP,π leaves S invariant, as we wished to prove.
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In particular, since a harmonic reflection sends a line to a line concurrent with
the mirror and coplanar with the center, our definition of the polarity does
not depend on the choice of generating rules a, b, c.

Finally, the proof that the polarity we have defined preserves incidence follows
in cases, but in a straightforward manner from the fact that if the tangent
plane to a point in S, say A as above, contains a point not in S, say P , then
the polar plane of P contains A.

Observe that, because of the incidence invariance, the polarity extends natu-
rally to a pairing of lines. The polar of a line ` is the intersection of all the
polar planes of its points, or of any two of them.

This polarity theorem asserts that what one sees as the contour of a ruled
surface is exactly its section with the polar plane of the viewpoint. Sections
and the contour of projections coincide. We now prove that sections of ruled
surfaces are harmonic curves, and that the corresponding harmonic bundle is
the projection from the pole of any one of the two rulings.

Proof of Theorem 1. Consider a harmonic curve, C, in a plane π. Our basic
aim is to prove that

• there exists a ruled surface S that has C as a section,

that is, such that C = S ∩ π. This will induce the desired polarity in π to
complete the proof of the theorem.

By definition, C is the harmonic curve of a quadrangle A,C,B,D. Let a and
b be the tangents at A and B, respectively; and let Q = a∧ b, q = A∨B. We
know that D = C · ρQ,q and that C is obtained by the A-construction (2).

Choose two points P and S not in π and colinear with Q (see Figure 9.a).

Let S ′ = S · ρP,Q. Since S 6= S ′, the four lines from S and S ′ to A and B can
be colored red and blue so that only lines of opposite colors touch. Finally,
consider the red (blue) line through C transversal to the two blue (red) lines.
We now have a Dandelin configuration of six lines colored red and blue: let S
be the doubly ruled surface it defines (Figure 9.b). By construction, P and π
are a polar pair with respect to S.
The polarity induced by S restricts naturally to a polarity in the plane π as
follows. The polar line of a point in π is the intersection of its polar plane with
π, and the pole of a line in π is the pole of the plane it generates with P —or
the intersection with π of its polar line. In particular, item (i) of Theorem 1
follows for S ∩ π.

Since harmonic reflections preserve the planes through their center, those for
non-incident polar pairs with pole in π, restrict to harmonic reflections of π
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Figure 9: a) A Dandelin configuration arising from the input of the A-construction
of C in a plane π. b) The corresponding ruled surface that intersects π in C.

that leave S ∩π invariant. Therefore, item (ii) of Theorem 1 follows for S ∩π.

That C = S ∩ π now follows from Lemma 3 and its proof because a line that
intersects S in three different points is easily seen to be a rule of S and π
contains no such rules.

Observe that, within the above framework, for any point in S ∩ π the inter-
section with π of its tangent plane to S is the projection to π from P of any
of its two rules. So that we may state the following theorem as a corollary to
the preceding proofs.

Theorem 4. Harmonic curves are the sections of ruled surfaces with non-
tangent planes. Moreover, harmonic bundles are the projection of rulings from
external points, and the tangent bundle of a section of a ruled surface is the
projection from the corresponding pole of any of its two rulings.

Finally, we prove the following theorem, making the appropriate remarks to
acknowledge Dandelin’s original proof of Pascal’s Hexagon Theorem that in-
spired our treatment.

Theorem 5. The Equipal Axiom is equivalent to Pappus’s Theorem.

Proof. First, we must state Pappus’s Theorem:

• The opposite sides of a planar hexagon whose vertices lie alter-
natively in two lines, meet in three collinear points.

Let a0 and b0 be coplanar lines with points B1, B2, B3 ∈ a0 and A1, A2, A3 ∈ b0,
so that the hexagon of Pappus’s hypothesis is A1, B2, A3, B1, A2, B3 considered
cyclically, and the theorem asserts that the three “Pappus’s points”

Pi = (Aj ∨Bk) ∧ (Ak ∨Bj) ,
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where {i, j, k} = {1, 2, 3}, are collinear.

The hypothesis of Pascal’s Theorem is that the six points named above lie not
on two lines, but on a harmonic curve and the conclusion is exactly the same.
Dandelin’s proof considers rules (ai and bi, i = 1, 2, 3) through the vertices
alternatively in the two rulings of a ruled surface. For the case of Pascal, this
would now follow immediately from Theorem 4; for Pappus, we need to work
a little more because the plane π = a0 ∨ b0 will turn out to be a tangent one.

Let a1, a2 be a pair of generating lines that meet π in A1, A2 respectively. Let
R′ = R(a0, a1, a2) so that b0 ∈ R′ and let b1, b2, b3 ∈ R′ be the rules through
B1, B2, B3 respectively. Now, let R = R(b0, b1, b2) so that a0, a1, a2 ∈ R and
finally, let a3 ∈ R be the rule through A3 ∈ b0.
We have defined eight lines of two types or colors, ai and bj with 0 ≤ i, j ≤ 3,
such that all pairs of different color except one do meet, namely, ai meets bj for
all i 6= 3 6= j. The Equipal Axiom implies that R = R(b0, b1, b3) and thus, that
a3 ∈ R meets b3. But moreover, the Equipal Axiom follows if this is always
true for the general setting of eight lines, because it implies R = R(b0, b1, b3)
letting a3 run in all of R′, and then moving the bj’s around R′, this implies
that a0, a1, a2 extend to the unique ruling R.

So, we are left to prove that the Pappus’s points P1, P2, P3 are collinear if and
only if a3 and b3 meet, see Figure 10

Figure 10: A Dandelin configuration over a plane with a Pappus configuration.

Suppose that a3 and b3 meet. Then ai and bj, with i, j ∈ {1, 2, 3} is a Dandelin
configuration. For any such i, j we have that

Ai ∨Bj = (ai ∨ bj) ∧ π .

17



So that the Pappus’s points may be seen as lines intersecting π:

Pi = ((aj ∨ bk) ∧ (ak ∨ bj)) ∧ π = ((aj ∧ bj) ∨ (ak ∧ bk)) ∧ π , (4)

for {i, j, k} = {1, 2, 3}. But these three lines meet pairwise, therefore they lie
in a plane that defines the Pappus’s line:

p = ((a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (a3 ∧ b3)) ∧ π ,

which proves Pappus’s Theorem and, for non-tangent planes π constitutes
Dandelin’s proof of Pascal’s Theorem.

We are left to prove that Pappus implies the Equipal Axiom which, as we have
seen, follows from proving that a3 meets b3 assuming that P1, P2, P3 lie in a
line p ⊂ π. Observe that (4) still holds for i = 3 (and {j, k} = {1, 2}), so that

δ = p ∨ ((a1 ∧ b1) ∨ (a2 ∧ b2))

is a plane because the two lines meet at P3. It contains the lines

`1 = P1 ∨ (a2 ∧ b2) and `2 = P2 ∨ (a1 ∧ b1) ,

which give us a point W = `1∧`2. To see that W ∈ a3 and W ∈ b3 to conclude
the proof, observe that W can be seen as the intersection of three planes in
two ways; namely, of δ, (a3 ∨ b1), (a3 ∨ b2) and δ, (a1 ∨ b3), (a2 ∨ b3).

6 Loose ends on axioms and projectivities.

We have argued as if referring to real projective space, which is the source of
our intuition. However, most of what we did (except for part of the hyperbolic
plane model described, but not the theorem proved) works verbatim in the
more abstract setting, but if we had made the reader aware of it we would
have lost audience considerably. Projective geometry has always been ground
for considerations about math foundations, so we think it is appropriate to
close with a few remarks concerning axiomatics and the breadth of our proofs.

The axioms on which our presentation is based and all its theorems are proved
are the following. A projective space consists of a ground set, or space, of
points with a well defined family of subsets called lines, satisfying:

1. Any two distinct points A and B lie on a unique line A ∨B.

2. Let A,B,C,D be four distinct points. If lines A ∨ B and C ∨D meet,
then the lines A ∨ C and B ∨D also meet.
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3. There are two lines that do not meet.

4. Lines have more than two points.

5. The harmonic fourth of three collinear points is neither of them.

6. The Equipal Axiom.

These axioms are a variation of those commonly used (e.g., the ones suggested
by Stillwell in [8]). The main difference being the replacement of Pappus’s
Theorem by the Equipal Axiom or Axiom of Double-rulings. Axioms 1 and 2
are the fundamental incidence axioms. The statement of Axiom 2 is attributed
to Pash and Veblen; it cleverly says that two lines meet if and only if they are
coplanar without the need of having planes previously defined. Axiom 3 means
the space is at least three dimensional (more than a plane), and it is known
to be equivalent to Desargues’s Theorem. Axiom 4 is required for geometry
to become interesting and not trivialized set theory.

The two final axioms depend on some further development of the theory; they
are not primitive. Axiom 5 guarantees that the ground field is of characteristic
different from 2 or, equivalently, that the geometry does not contain the Fano
Plane. The characteristic of a projective space can be defined geometrically
using the harmonic fourth construction; essentially from how far can one go
in a harmonic sequence without returning. It is needed here to make sense of
harmonic curves (and that harmonic reflections are not the identity) because
it implies that harmonic sets that have exactly four points do exist. Axiom 6
is a required additional principle for geometry to be rich enough to have a deep
relation to other classic branches of mathematics like analysis and topology;
bellow, we will discuss the several versions it may adopt.

From the first 4 axioms, flats can be defined as the closed subsets under the
operation of taking lines, and then, the dimension of a flat is obtained as
one less than the number of points needed to generate it; so that planes are
defined as flats of dimension 2, [9]. The incidence properties of planes and
lines in a space of dimension 3 are obtained from this; and the Hilbert-Cohn
Vossen construction of ruled surfaces follows, making sense of the statement
of the Equipal Axiom.

Since the Equipal Axiom is equivalent to Pappus’s Theorem, the arithmeti-
zation of projective space yields a commutative field as ground field, see [8]
where this commutativity is proved to be equivalent to Pappus’s Theorem and
the ground field is described from scratch. Hence, to prove the necessity of
such an axiom, a projective space over a non-commutative or skew field like
the quaternions has to be constructed.
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Another widely used version of Axiom 6 is as the uniqueness part of the Funda-
mental Theorem of Projective Geometry. It is usually stated in the context of
planar geometry where Axioms 1 and 2 become appealingly dual (and Axiom
3 is false). A projectivity is defined as the composition of projections between
(points in) lines or (lines in) concurrent pencils; they are always bijections.
It is not hard to construct a projectivity determined by it’s (arbitrary) effect
on (any) three elements of it’s domain. This is the existence part of the Fun-
damental Theorem. However, the uniqueness is proved to be equivalent to
Pappus’s Theorem, so one must be assumed to prove the other, see [3], [9].

We think that Axiom 3 is natural because it responds and gives credit to the
motivation of Projective Geometry which is, undoubtedly, renaissance per-
spective in which dimension 3 is essential. But then, if one thinks about
projectivities between lines in a three dimensional projective space, one is nat-
urally lead to consider ruled surfaces. Indeed, given a projectivity from a line
a to a non coplanar line b, the set of lines joining a point in a to its image in
b turns out to be a ruling. So, the Equipal Axiom is intimately related to the
uniqueness of projectivities given by three arbitrary values (the projectivity is
determined by the extended ruling of three lines). Moreover, this association
of a set of lines to a function between lines is also a classic idea. It is the
dual of how Jakob Steiner (1796–1863) defined conics in a purely projective
manner; and is a natural, visual way of presenting them, e.g., [9].

Projective geometry is remarkable in many ways. One of them is the im-
portance of some mathematical notions that were worked and experimented
within it long before their abstract general acknowledgement. For example,
projectivities were masterly used almost one century before the notion of sets
and the language of abstract functions was stablished; moreover, together they
constitute what we now call a groupoid (defined in the mid XX century within
category theory). And of course, there is the leading role it played in broad-
ening our notion of geometry and its influence on the dawn of topology. There
are many ways to approach it and present it. We hope this paper contributes
to the awareness of its cultural significance; to finding “its way down into
secondary schools”, [6], and into early undergraduate courses.
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